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Abstract

Hopf-bifurcation analysis is used to determine flutter boundaries of a pitch and plunge airfoil
(PAPA) at transonic Mach number conditions. The PAPA model is a coupling of the Euler equations
and a two-degree-of-freedom structural model composed of linear and torsional springs. The Euler
equations are discretized using an upwind total variation diminishing scheme (TVD) of Harten
and Yee. Equilibrium solutions of the PAPA model are computed using Newton’s method and
dynamic solutions are explicitly integrated in time with first-order accuracy. The Hopf-bifurcation
point, which models the flutter condition, is computed directly by solving an extended system of
equilibrium equations following the approach of Griewank and Reddien. The extended system is
solved using a blocked Gauss-Seidel Newton relaxation scheme to improve computational resource

requirements.

Hopf-points are computed and validated through consistency checks with time-integration
solutions, eigenvalue analysis of the equilibrium system Jacobian matrix, and solutions from the
open literature. Time-integration allows time-dependent behavior of the PAPA system to be an-
alyzed near the stability boundary and allows for comparison of limit-cycle oscillations. Paths of
Hopf-points are computed for variations in Mach number, structural damping, and static pretwist.
The Hopf-point computation is shown to have a factor of ten performance advantage over the
time-integration method for a single Hopf-point and even greater performance advantage when

computing flutter boundaries with continuation.

The PAPA model is generalized to include a bilinear torsional spring. The bilinear torsional
spring is in a two-parameter family of nonlinear structural models which includes freeplay. Flutter
boundaries are computed for a wide range of the two parameters. A combination of the two

parameters yields a single flutter boundary in terms of a single normalization variable.

Xix



NONLINEAR ANALYSIS OF AIRFOIL FLUTTER
AT TRANSONIC SPEEDS

1. Introduction

Aeroelasticity has been an area of research interest for many years. This interest is due
to the catastrophic effects of the aeroelastic phenomenon called flutier. Flutter is an oscillatory
aerodynamic condition resulting from fluid-structure interaction. The instability can be associated
with the formation of large vortical structures, as in the case of the low-speed, high angle-of-
attack flow regime or associated with complex shock wave motion in the transonic regime. The
high-frequency and large-amplitude motion that results from flutter can cause loss of structural

integrity in wings. For this reason, the prediction of flutter is of the utmost importance.

Researchers have typically computed the onset of flutter through simulations of the time-
accurate behavior of the aeroelastic body [40]. The flutter onset point is located by bracketing
the stability transition point with multiple time-integration solutions. This method can be com-
putationally expensive for solutions of the Navier-Stokes equations for two reasons. First, each
simulation requires an extended total time to simulate the time-periodic behavior near the flut-
ter point without transients. Second, several simulations are necessary to bracket the stability

transition point.

An alternate method of computing a flutter point is to directly compute the stability transition
point using an extended system of equations comprised of the equilibrium equations and conditions

related to flutter onset. Direct computation of the flutter onset point is the focus of the current

research.
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1.1 Historical Perspective on Flutter

One of the earliest analytical treatments of flutter was published by Theodorsen [129]. He
showed that a two-degree-of-freedom airfoil model could achieve a condition of instability. His
analysis is based on the assumption of potential flow. In a follow-on study by Theodorsen and
Garrick [130], a rectangular wing section was tested in a wind tunnel at 202 mph and the violent
flutter motion was photographed (Figure 1.1). Since then, many experiments, analytical studies,

and computational studies have been performed for incompressible and compressible flow.

Edwards and Thomas [40] and Edwards and Malone [41] have written summary papers on the
transonic aeroelasticity problem. In these papers they discuss the various types of oscillatory flow,
the various mathematical models necessary to simulate the phenomenon, and a list of experimental
data to be used for comparison. Reference [40] primarily discusses two-dimensional modeling and

experiments, whereas reference [41] considers the three-dimensional problem.

1.1.1 Summary of Ezperimental Data.  The unsteady airfoil data available prior to 1987
was reviewed by Edwards and Thomas [40] and is summarized in Table 1.1. Table 1.1 is a cross-
referencing of airfoil type, experimental data, and numerical method. Every reference in Table 1.1
has experimental data for the airfoil listed. Headings for the columns denote various governing
equations solved by the numerical methods. As one can see from Table 1.1, many different airfoils
and numerical methods have been used in the past. The first three airfoils are conventional airfoils
with a variation in the thickness ratio of 6, 10, and 12 percent. Tijdeman [133] tested the NACA
64A006 airfoil with a trailing-edge control surface allowed to oscillate about its quarter chord.
These tests have become a classic source for the classification of transonic flow phenomena. Davis
and Malcolm [32] tested the NACA 64A010A airfoil for pitching oscillations. Two of the cases from
these tests have become widely studied: a moderate shock wave case at a freestream Mach number,
My, of 0.8 and an angle-of-attack, a, of 0°, and a case with steady shock induced separation at

My = 0.8 and a = 4°. Landon [10] performed a study of the NACA 0012 airfoil in which larger
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Figure 1.1 The Effect of Violent Flutter, Theodorsen and Garrick [130]
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dynamic pitching amplitude motion and transient ramping motion was conducted, making the data
suitable for dynamic stall computational studies. McDevitt and Okino [91] reported measurements

of periodic shock induced oscillations for the NACA 0012 airfoil.

References for several supercritical airfoil studies are also provided in Table 1.1. Tijdeman
and Davis [76] provide data for the 16 percent thick supercritical NLR 7301 airfoil including the
shock free condition. Zimmerman [152] presents data for the 8.9 percent thick MBB A-3 airfoil,
also including the shock free condition. Other supercritical airfoils tested for oscillatory motion or
unsteady behavior are a 12 percent thick airfoil tested for pitching, heaving, and flap rotation by
den Boer and Houwink [33], the RA16SC1 airfoil tested by ONERA [62], and a cryogenic test of a
supercritical SC(2)-0714 airfoil by Hess et al. [51]. Reference [33] reported large dynamic responses
of airloads on the supercritical airfoil for both oscillating and static motions for mixed separated

and attached flow conditions.

Circular-arc airfoils have also served as the basis for the establishment of standard comparison
data sets. References [89] and [90] provide detailed results for an 18 percent thick airfoil for Reynolds
numbers ranging from 1 million to 17 million, covering laminar to fully developed turbulent flows.
Time-periodic flows were observed over a narrow range of Mach numbers, which differed depending
on whether the Mach number was increasing or decreasing. Mabey [80] studied similar periodic
flows for a series of circular arc airfoils ranging in thickness between 10 and 20 percent over Reynolds
numbers between 0.4 and 0.6 million. Reference [81] further investigates a larger, 14 percent thick

circular-arc airfoil.

Rivera et al. [103, 104, 105, 12, 106] from NASA Langley have been involved in the “Bench-
mark Aeroelastic Models Program”, which has the primary purpose of providing the necessary data
to evaluate computational fluid dynamics codes for aeroelastic analysis. This series of experimental
tests utilizes a rigid, rectangular planform model. The model is allowed to pitch and plunge and

the angle-of-attack for zero structural load can be varied. Three different airfoil sections are being




Airfoil TSD FP EE NS
NACA 64A006 | [5],[114]",[53],[141] | [116],[46] [82],[83]
NACA 64A010A |  [57),128],[47),[53], | [85],[46], | [83],[118],[120] [27],126]
[38],[107]",[141},(39], | [52],[48]
[143]+7[86]*5[29]*'[42]*
NACA 0012 | [53],[19]",[65]",[143]*, | [48],[99]* | [60],[9],[59] [116],[3],[21],

[127]*,[39] [66],(54]
NLR 7301 [38],[53],[64]", [85] | [84],[118],[120]

[86]*,[143]+
MBB A-3 [107)*,[38],28],

[47],[86]*,[91]
Supercritical [54]*,[65]*,[33]*,[62]

Circular Arc (63]*,[64]*,[42]* [89],[67],[90],(68]
Other 4] [125],[100], [66],
(21]

Table 1.1 Index of References for Experimental and Numerical Data extracted from [40] (*-
interacted boundary layer model, +-nonisentropic corrections, TSD-transonic small dis-
turbance equation, FP-full potential equation, EE-Euler equations, NS-Navier-Stokes
equations)

tested: the NACA 0012 airfoil, the NASA SC(2)-0414, and the NACA 64A010 airfoil. The model is
instrumented at two spanwise locations (60% and 95%) for pressure, and accelerometers are placed
on the wing planform as well. Other configurations include a trailing-edge control surface which
can be actively controlled. Reference [106] includes plots of stability boundaries for both variations
in Mach number and angle-of-attack. Steady and unsteady pressure distributions are also provided

for a pinned and unpinned model, respectively.

1.1.2 Summary of Numerical Methods. The choice of method for the numerical simulation
of flutter is highly dependent on the flow conditions that exist. Edwards and Thomas [40] and
Edwards and Malone [41] discuss three flow types. Type 1 flows include one of the most important
aeroelastic analysis conditions, cruise at high dynamic pressure (attached flows). Type 2 flows
represent an increase in speed or angle-of-attack from the type 1 conditions resulting in a mixed
attached and separated flow region. The mixed flow can result in significant unsteadiness even for
rigid airfoils. Type 3 flows result from even further increases in speed or angle-of-attack and are

characterized by fully separated flow regions.
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1.1.2.1 Time-Integration Methods. As Table 1.1 depicts, there are a variety of
computational methods available to analyze the aeroelastic phenomenon of flutter. The majority
of the analyses have been accomplished with various forms of the potential-flow equation and have
been limited to type 1 flow conditions. Both TSD and FP formulations have been used, but due
to the lack of boundary-layer modeling, type 2 and 3 flows could not be simulated. These methods
sometimes use a linearization of the airfoil surface boundary conditions by applying them at a mean
airfoil surface position, thereby allowing a fixed grid to be used. Extensions of the FP and TSD
codes include interactive boundary-layer models, which solve the boundary-layer equations after a
potential flow solution has been found, and then iterate this procedure to a solution. Also, some
researchers have developed corrections to the potential flow equations to include boundary-layer

effects. References for the FP and TSD equations are given in Table 1.1.

The majority of modern flutter simulation is with the unsteady Euler equations. Euler meth-
ods primarily incorporate higher-order schemes to capture accurately the complex shock wave
motions associated with transonic flows. The improved Euler codes tend to enforce accurately the
airfoil surface boundary conditions and either lag the dynamic airfoil motion or solve the Euler
equations and the dynamic motion of the airfoil simultaneously. References for solutions to the
Euler equations are also given in Table 1.1. Note that the number of references are much less than

TSD or FP, but still include supercritical airfoil calculations.

Bendiksen and Kousen [10] developed a time-integration scheme to analyze transonic flutter of
an airfoil with pitch and plunge freedom. The unsteady airloads were computed by solving the Euler
equations with a finite-volume scheme on a moving mesh. The structural model was comprised of
linear and torsional springs. Two second-order differential equations govern the motion in pitch
and plunge. The authors computed solutions for two cases of a NACA 64A010 and one case of a
NACA 64A006 studied by other researchers. The flutter boundaries for these cases are obtained

by bracketing the boundaries with time-integration solutions. Solutions were obtained by first
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oscillating the airfoil in pitch for 3-6 cycles at an amplitude of 0.1° and then releasing the airfoil.
The resulting oscillatory behavior was used to define the stability of the system for the particular
parameters chosen. By varying the reduced velocity and holding other parameters constant, a plot
of the steady-state angle-of-attack and maximum amplitude of the oscillatory angle-of-attack was
generated and the flutter onset point documented. They state that the results are in overall good

agreement with other researchers results except where strong shocks are present.

Kousen and Bendiksen [73] use the previously described method [10] with the modification of
allowing a nonzero static pretwist. The freedom allowed oscillations about nonzero angles-of-attack.
The computed Hopf-bifurcation curves for Mach numbers in the range 0.85 — 0.92 were provided.
They discovered a weak divergence for a small range of reduced velocity. This weak divergence was

shown to be an attractor in neighboring limit-cycle solutions.

Kousen and Bendiksen [74] further modified the code to allow a nonlinear structural model.
The structural nonlinearity was a structural freeplay, whereby the torsional moment goes to zero
for a range of angles-of-attack symmetric about zero. The static freeplay was shown to significantly
decrease the critical reduced velocity. Bendiksen [11] also modified the code to allow a moving
trailing-edge flap. The computed solutions show a nonclassical form of shock-induced aileron buzz
for certain structural parameters. Bendiksen states that the results suggest that shock-induced

separation may not be an essential driving force for all “buzz” phenomena.

A few references listed in Table 1.1 model the fully viscous, shock-boundary-layer interaction
problem by the Navier-Stokes equations with a turbulence model. These methods employ either
explicit or implicit time-integration, with the majority using higher-order methods such as TVD

schemes.

A representative study of viscous flutter is by Wu, Kaza and Sankar [146]. They developed a
method of analyzing both transonic flutter and stall flutter. Their method solved the compressible

Navier-Stokes equations in a body fitted, moving coordinate system using an approximate factor-
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ization scheme. The structural equations were for pitch and plunge motion and were integrated in
time with an Euler implicit scheme. They computed a viscous solution for a NACA 0012 under-
going dynamic stall at a freestream Mach number of 0.283 and a Reynolds number of 3.5 million.
They also computed an Euler solution of a NACA 64A010 undergoing forced oscillatory motion at
a freestream Mach number of 0.8. Both solutions were computed to validate the method against
experiments and published numerical solutions. They also computed a flutter boundary as a func-
tion of the airfoil mass ratio using the Euler method for a NACA 64A006 airfoil at a freestream
Mach number of 0.85. Using the same Mach number and structural parameters as used in the
flutter boundary of inviscid solutions, a viscous solution was computed for a Reynolds number of 9
million. The airfoil mass ratio for flutter was slightly lower for the viscous solution (zs = 170 for the
viscous solution versus y, = 174.75 for an inviscid solution) with a consistently higher amplitude
of motion. They made the statement that the viscous and inviscid flutter boundaries were within
2% of each other, which reinforces their belief that in studies of high Reynolds number transonic
flutter, inviscid calculations would suffice. They conclude that more analysis should be performed

to study the effects of finer grid resolutions and different turbulence models.

A time-integration work related to the current research is by Buxton [22]. Buxton compared
two shock capturing methods applied to transonic airfoil flutter. One of the methods compared was
the time-integration method developed for the current research by the author. The other method is
a 3-D Beam-Warming, Navier-Stokes/Euler solver, ENS3DAE [121]. Buxton modified ENS3DAE
to allow pitch and plunge freedom of a rigid, rectangular wing by adding the structural model
developed in the current research (discussed in later chapters in detail). Two-dimensional flow was

enforced by placing inviscid planes at the wing tips.

Buxton found that, although the shock capturing method of the current method produced
crisper shocks, the flutter onset point compared within 1%. The methods did show larger differences

for the amplitude of oscillation of stable limit-cycles. ENS3DAE solutions were more dissipative
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than the solutions of the current method, in general. (Comparisons from this work are provided in

greater detail in Chapter V.)

1.1.2.2 Hopf-Bifurcation Methods. An alternate method of computing transitions
from stable steady-state solutions to oscillatory solutions (flutter) is with bifurcation theory. Chap-
man and Tobak [25] review the forms of bifurcation which can occur between steady and unsteady
flows. One of the aerodynamic problems discussed by Chapman and Tobak [25] involves a Hopf-

bifurcation, due to transonic shock wave motion coupled with a dynamical system.

Hopf-bifurcation mathematically describes the transition point from a steady-state solution
to an oscillatory solution [115]. Hopf-bifurcation points are characterized by having a complex pair
of eigenvalues of the system Jacobian matrix with zero real part. Also, local to the Hopf-point, the
real part of the eigenvalue pair must transition from negative to positive as a system parameter is

varied.

Hui and Tobak [55] applied Hopf-bifurcation theory to the computation of the onset of pitching
motion for a flat plate in a supersonic or hypersonic freestream. The aerodynamic model was limited
to an assumed slowly varying harmonic motion. The freestream Mach number was assumed to be
supersonic or hypersonic, omitting transonic effects. The dynamic system was simplified to a flat

plate with pitch only freedom. Solutions were computed for a variety of supersonic Mach numbers.

A very general bifurcation analysis was developed by Griewank and Reddien [45]. They
appended conditions on the eigenvalues of the fully implicit Jacobian matrix to the chosen governing
equations, allowing a direct computation of the Hopf-bifurcation point. Their algorithm was applied
to a one-dimensional convection-diffusion-reaction model problem. Several bifurcation points were

computed for various system parameters, demonstrating the viability of the algorithm.

Jackson [58] provided the earliest application of the GR algorithm to two-dimensional flow
past arigid body modeled with the Navier-Stokes equations. He applied the Navier-Stokes equations

with the assumptions of viscous, laminar, incompressible flow to rigid cylinders, ellipses, flat plates,
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and wedges. The governing equations were discretized with a standard Galerkin finite-element
method. The algorithm was developed to compute directly the stability transition point from
stable, steady-state flow, to time-periodic flow for the various body shapes. Jackson cast the
nondimensional governing equations in such a way as to have the ratio of major and minor axes
as a parameter of the system. The angle of rotation between the minor axis and the freestream

velocity vector was also a parameter of the system.

Jackson presented the idea of a consistency check of the Hopf-point with independently com-
puted eigenvalues. He used an inverse iteration method of computing the generalized eigenvalues
and eigenvectors of a nonsymmetric Jacobian matrix. The eigenvalue analysis provided both an
Initial guess of the eigenvector for the first Hopf-point calculation and a consistency check with the

directly computed Hopf-point.

Jackson points out that the Hopf-point calculation converged only from “good” initial guesses
for the basic flow, the critical Reynolds number (Hopf-point parameter), the critical Strouhal
number (critical eigenvalue), and the eigenvector of the bifurcating solution. The procedure to
compute a solution of a circular cylinder was to first use experimental data to specify a critical
Reynolds number. Next, the complex eigenvalue nearest to 40.11 and its eigenvector related to this
Reynolds number were computed with eigenvalue analysis. Using this initial data set, solutions
generally converged rapidly to the Hopf-point. For a given grid, additional Hopf-points for changes
in geometric and aerodynamic parameters were computed with initial guesses based on neighboring

Hopf-points.

Jackson computed solutions for ratios between 10~* (representing a flat plate) and 2 (an
ellipse). Solutions for increasing rotation angle produced a corresponding computational grid with
increasing distortion to allow previous solutions to be used as initial guesses. The undistorted
circular cylinder solutions compared very well with experimental data and time-integration solu-

tions. Rotated ellipses, and wedges of different apex angles were also computed, demonstrating
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the viability of the GR algorithm to compute solutions for a wide variety of shapes. Jackson notes
that a companion time-integration method would allow flowfield solutions past the Hopf-point to

be analyzed.

The works of Lutton [78], Beran and Lutton [15], and Lutton and Beran [79], applied the GR
algorithm to a static NACA 0012 airfoil at various angles-of-attack. In references [78] and [15] a
suite of time-integration, eigenvalue analysis, and Hopf-bifurcation algorithms were developed to

analyze the point at which the flow over an airfoil becomes time-periodic for large angles-of-attack.

The streamfunction-vorticity form of the Navier-Stokes equations was used to model viscous,
laminar, incompressible flow over an airfoil. A lack of time-dependent terms in the streamfunction
equation caused a very complex form of the eigenvalue problem. The streamfunction-vorticity form
of the eigenvalue problem involved a full, nonsymmetric matrix of rank equal to the number of
grid points. The full matrix eigenvalue problem affected both the eigenvalue analysis and the GR
algorithm applied to the streamfunction-vorticity equations. The details of how the GR algorithm

was affected is discussed in Chapter VI.

Beran and Lutton [15] computed the critical Reynolds number for the onset of periodic
motion as a function of angle-of-attack. The computed stability boundaries were validated with
time-integration and eigenvalue analysis. Typically, only four iterations were required to compute
an onset point. The stability boundary computed was the first directly computed flutter boundary
for viscous flow over an airfoil modeled with the Navier-Stokes equations, as determined by an
extensive computer search of the Aerospace Database. Unfortunately, the GR algorithm applied to
the stream function-vorticity equations required O(N?) operations, where N represents the number

of grid points. The authors state that the operation count practically limited the grids to N < 4000

for their analysis.

The time-integration method was extended to allow pitch and plunge motion [78, 79]. The

structural equations governing the pitch and plunge motion were comprised of linear and torsional




springs with structural damping in both axes, and a nonzero unloaded angle-of-attack or static
pretwist. The structural equations were integrated forward in time with a fourth-order Runge-
Kutta algorithm loosely coupled with the aerodynamics solver. Flutter boundaries were computed
for many structural and aerodynamic parameters. Also, the location of the Hopf-point for an airfoil
with structural coupling was computed with the time-integration method and compared with the

Hopf-point for a static airfoil computed with the direct method.

Lutton [79] describes attempts at extending the GR algorithm applied to the streamfunction-
vorticity equations to allow pitch and plunge structural motion. Extending the direct method to
allow pitch and plunge freedom was not straightforward and was abandoned after limited attempts

due to changing priorities in the research effort.

The works of Lutton [78], Beran and Lutton [15], and Lutton and Beran [79] formed a founda-
tion for the current research. Their successes with the GR algorithm applied to the incompressible
Navier-Stokes equations aided in developing the necessary functional analysis tools to compute
transonic flutter boundaries. Also, Lutton’s [78] development of the pitch and plupge structural
model and fourth-order Runge-Kutta time-integration scheme provided the necesséry structural dy-
namics foundation for the current research and ongoing research by other investigators (Smith [119]

and Buxton [22]).

The structural dynamics equations of Lutton [78] were nondimensionalized, in a form compat-
ible with structural parameters in the literature and the aecrodynamics equations, by Smith [119] and
the author. Smith’s research extends the work of Lutton and Beran [79] to include a trailing-edge

control surface to delay the onset of flutter.

To demonstrate the validity of coupling the developed structural dynamics equations with
aerodynamic equations suitable for computing flows with shocks, the eigenvalue analysis of Jack-
son [58] and Beran and Lutton [15] was applied to a pitch and plunge airfoil at transonic Mach

number conditions by Morton and Beran [94]. The method was further extended to apply a modified
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form of the GR algorithm to the structural coupling model by Morton and Beran [95]. The details

of these two references are contained in this document as well as new and important developments.

During the course of computing comparison time-integration solutions, it became apparent
how computationally expensive time-integration methods are [94, 95]. In general, accurate com-
putation of a flutter point involved four or more oscillatory solutions, with two of them close to
the stability point. Due to the light damping, solutions near the flutter point required up to 10°

explicit iterations.

1.1.2.3 Figen-Mode Time-Integration Method. Hopf-bifurcation analysis is based
on a transition of eigenvalues of the fully implicit Jacobian matrix of a system of governing equa-
tions [115]. This transition is important since complex eigenvalues represent oscillatory modes of
the system. References by Dowell [35] and Romanowski and Dowell [109, 110] develop a method of
using the eigenvalues to approximate efficiently the time-accurate behavior of a fluid-structure in-
teraction system. The method is a combination of the foundation mathematics in Hopf-bifurcation

analysis and time-integration methods, and can be summarized in the following way:

o a steady-state solution is computed with a Beam-Warming ADI Euler or Navier-Stokes time-

integration method,

the Jacobian matrix is formed analytically with the solution computed in the first step,

a reduced order set of eigen-modes are computed with an efficient eigenvalue-eigenvector

algorithm,
e the eigen-modes are used to form a reduced order aerodynamic model,

e the reduced order aerodynamic model is coupled with the structural modes to simulate a

fluid-structure interaction system.

They found that a very small number of modes is adequate in simulating the dynamic behavior

and resulted in vast improvements in efficiency for a coarse grid over standard time-integration
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methods. As the grid was refined, the number of necessary eigen-modes increased but was still far
fewer than the number of degrees of freedom (< 1%). All of the simulations reviewed are for Mach
numbers less than 0.5. Their method is included in this review because they utilize some of the
same foundational mathematics as the Hopf-bifurcation methods and because the method shows
promise as a tool to analyze time-oscillatory solutions near the directly computed Hopf-bifurcation
point. It is unknown whether the method is suitable for unsteady flows with strong shocks or for

viscous, separated flows.

A significant contribution of the work of Romanowski and Dowell is their development of a
very efficient algorithm to compute a reduced set of eigenvalues and corresponding eigenvectors of
large nonsymmetric matrices, typically encountered with the discretized Euler equations, termed
the Modified WYD algorithm. The resulting method was demonstrated to compute a reduced set

of eigenvalues and eigenvectors for systems with on the order of 10* degrees of freedom.

A point of concern is the method of obtaining the equilibrium solution to linearize about.
Romanowski and Dowell obtain solutions to linearize about using a time-integration method, from
which a reduced order model is computed [109]. Since time-integration methods provide time-
oscillatory solutions for conditions past stability boundaries, it is unclear as to how this method
in present form can simulate stable limit-cycles when the unstable mode is an aerodynamic mode.
Also, stable solutions very close to the stability boundary are computationally expensive to obtain
due to the light damping, the very situation the current research is intentionally avoiding with an
equilibrium method. It should be noted however, that the steady-state solution necessary in their
method could be computed with equilibrium methods such as the one developed in the current

research.

1.1.3  Nonlinear Structural Models. It has been shown by many investigators that for some
regions of the flutter envelope, linear aerodynamic models are not adequate to model the flutter

boundary of a physical system [40, 41]. Several investigators have improved the aerodynamic model
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by implementing the nonlinear Euler or Navier-Stokes equations [40, 95]. Still, for many flutter
cases, there remains disagreement between analysis and test results attributable to concentrated
structural nonlinearities [20]. To improve simulations of fluid-structure interactions near flutter

boundaries, nonlinear structural models must be used [20].

Reference [20] discusses several different types of concentrated nonlinear structural models
and presents a method of analyzing combinations of them for a linear aerodynamic model. Ref-
erence [134] presents a method of analyzing the nonlinear structural components of preload and
freeplay with the transonic small disturbance aerodynamics model and analyzes the stability of
the systems resulting. Reference [74] extends the time-integration limit cycle analysis based on
the Euler equations with a linear structural model to a nonlinear freeplay model. The results of
this reference show significant movement of the flutter boundary for a single freeplay magnitude.
Also, re-stabilization is presented for a NACA 64A010 with an elastic axis at the leading edge. The

associated Hopf-bifurcation curve displays three Hopf-points.

Structural nonlinearities add a level of complexity that is not prohibited by the Hopf-point
algorithm discussed previously. The change in stability behavior is so dramatic that designers of
aeroelastic systems are interested in tools to analyze this class of structural models. For these

reasons the current research is applied to the structural nonlinearity problem.

1.2 Research Scope and Objectives

The purpose of the current research is to improve the efficiency with which flutter boundaries
are computed for fluid-structure interaction systems capable of modeling nonlinear aerodynam-
ics and structural dynamics. Since time-integration methods are computationally expensive for
computing time-accurate solutions near stability boundaries and they also require two or more

solutions to bracket a stability point, more direct methods are desirable. Hopf-bifurcation meth-
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ods show promise for computing stability boundaries but have not been applied to fluid-structure

interaction systems based on Euler or Navier-Stokes aerodynamic models.

The scope of this research is threefold:

e develop a high-level algorithm to compute the stability transition point of a dynamic system,

e maintain a general formulation which involves Euler or Navier-Stokes aerodynamic equations

and a general description of the structural degrees of freedom,

o apply the approach to a two-dimensional airfoil with pitch and plunge freedom in the transonic

flow regime to demonstrate the gains in efficiency.

The following two subsections describe specific objectives of the research and a summary of the

research method. The last subsection outlines the research document.

1.2.1 Research Objectives.  There are seven specific research objectives:

1. Develop a 2-D, inviscid, shock-capturing, computer code to compute time-integration and

equilibrium solutions for a static airfoil while

e ensuring the time-integration method is completely consistent with the equilibrium

method,

e ensuring the equilibrium method is easily extensible to viscous flow problems and fluid-

structure interaction problems.

2. Extend the time-integration code to admit two degrees of structural motion (pitch and plunge)

for the rigid airfoil.

3. Add a coupled fluid-structure interaction model with both linear and bilinear torsional mo-

ment model for pitch and plunge freedom (PAPA) to the time-integration and equilibrium

algorithms.

4. Validate the code for three classes of solutions
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o static flowfield solutions,
e prescribed dynamic motion solutions,
e PAPA solutions (equilibrium and time-integration).

5. Develop an algorithm to directly compute the stability transition point of a fluid-structure

interaction system with two criteria:

e a workload on the order of a regular point calculation per iteration,

e no fundamental restrictions from extending the method to a three-dimensional problem,

(assuming infinite computational resources are available).

6. Apply the algorithm to a PAPA model and validate the solution with time-integration and

eigenvalue analysis.

7. Compute flutter boundaries for various aerodynamic and structural parameters.

1.2.2 Research Solution Method. To model the flutter of airfoils at transonic speeds,
several complex flow features must be addressed: unsteady motion, strong shock waves, and moving
boundaries. The dynamic motion of the airfoil is modeled through a two-degree-of-freedom pitch
and plunge model consisting of linear and torsional springs [129]. This model has been extensively
used by many of the studies previously discussed and provides the freedom for complex, coupled,
rotational and translational motion. A total variation diminishing (TVD) scheme is used to solve
the Euler equations in strong-conservation form [149]. This approach accurately models shock
wave structures at transonic Mach numbers [149] and is representative of modern flow solvers. The
system of nonlinear, algebraic equations resulting from discretization of the governing equations
is solved by Newton’s method. Hopf-bifurcation points, which signal flutter onset, are directly

computed on paths of equilibrium solutions following the procedure of Beran and Lutton [15].

Several of the tools necessary to successfully meet the objectives of the research have been used

for other fluid dynamic problems. The four main tools necessary are Newton’s method of computing
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stable and unstable equilibrium solutions, Jacobian matrix elements computed numerically, linear
system solvers for bordered, banded matrices, and iterative forms of the Hopf algorithm. The
following subsections give representative works which utilize three of these methods. Although
each of the first three tools have been used before, an algorithm to compute flutter boundaries

incorporating all of them is unique.

1.2.2.1 Newton’s Method. Newton’s method is an attractive method to compute
stable and unstable equilibrium solutions because of its robustness and quadratic convergence.
The method has been applied to many engineering problems. This section describes a few of the

applications of Newton’s method to Euler or Navier-Stokes equations.

In the area of vortex breakdown, several authors have applied Newton’s method. Beran [13]
applied Newton’s method to axisymmetric, incompressible, vortex breakdown. Due to the rapid
convergence of Newton’s method, Beran was able to compute a wealth of solutions for variations
in Reynolds number, vortex strength, and other parameters of the system, including nonunique
solutions. Morton [96] extended Beran’s method to include compressibility effects on the vortex
breakdown problem. Tromp [135] used Newton’s method to efficiently compute axisymmetric so-
lutions which he used as initial conditions for a 3-D, time-accurate, Beam-Warming algorithm. His

analysis described the transition from 2-D vortex breakdown to 3-D vortex breakdown in a pipe.

Newton’s method has also been applied to flows with shocks. Hafez, Palaswamy, and Mar-
iani [49] applied Newton’s method to a discrete, upwind and central difference form of the Euler
equations and computed transonic flows over a cylinder and a NACA 0012 airfoil. In all cases,
quadratic convergence rates were found. Venkatakrishnan [136] applied Newton’ method to invis-
cid and laminar viscous solutions of a NACA 0012 airfoil at transonic Mach number conditions.

He explored methods of accelerating convergence and increasing the efficiency of the linear system

solvers.
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1.2.2.2 Numerical Jacobians. An important element in Newton’s method is the
system Jacobian matrix. Complex shock capturing methods of solving the Euler and Navier-Stokes
equations make the error free analytical determination of Jacobian matrices extremely difficult in a
timely manner. Some researchers have computed the Jacobian matrices numerically to circumvent
this problem. An added benefit of Jacobian matrices which are computed numerically is the relative
ease with which the algorithm can be modified. With analytical Jacobian elements, a change to
the system of equations means a change in the computer code for each affected Jacobian element.
On the other hand, using a numerical procedure to compute the Jacobians is independent of the

specific nature of each equation in the system and is thus programmed once.

Orkwis [98] applied a method of obtaining the Jacobian matrix numerically to computing
Navier-Stokes solutions of flows with shocks. His method incorporated a Roe flux-difference-
splitting scheme to enhance shock capturing and includes viscous terms for laminar flow. Jacobian
elements were computed with a first-order finite-difference approximation. The method was com-
pared with analytical Jacobians to assess convergence trends. Orkwis has found that in all cases,
Newton’s method with numerical Jacobian matrices converged faster than analytical Jacobian ma-
trices. He states that this may be due to an error in the analytical Jacobian, pointing out one of
the reasons for using numerical Jacobian elements. He states that the simplicity with which the
numerical Jacobian elements are computed and the reliability of the Jacobian elements make the

method a very useful one.

1.2.2.3 Bordered Systems.  Discrete systems of equations associated with the Navier-
Stokes equations typically produce Jacobian matrices with a large banded region. When coupling
the aerodynamic equations to a small number of structural equations, the matrix is typically com-
prised of a large banded system bordered by a small number of rows and columns. The resulting
linear system can no longer be solved with a standard banded matrix, linear system solver. A

method of solving this type of linear system has been used in other contexts. Beran [13] applied a
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border technique to solve a linear system resulting from the continuation procedure of Keller [70].
The increased workload of the bordered system solve over a banded system solve was negligible for

the one bordered equation considered in this study.

1.2.2.4 Proposed Iterative Hopf Algorithm. Iterative forms of the GR algorithm
applied to large aerodynamic systems have not been attempted. Proposals of iterative methods to
solve the Hopf problem have appeared in two sources. The first source, reference [97], proposed
a Gauss-Seidel method of eliminating manipulations which produced a full matrix in the work
of Beran and Lutton [15]. The second reference, [16], generalized the method, allowing Euler or

Navier-Stokes equations to be used as the aerodynamic model.

1.2.8 Research Overview. This section presents an overview of the research document.
Chapter II describes the overall scheme for obtaining directly a stability transition point of an
aerodynamic system. The first section defines relevant terms and analysis tools used in the method.
The second section develops the extended system of equations describing the stability transition
point. The last section outlines Newton’s method, the foundational method of solving the nonlinear

systems of equations for equilibrium and stability transition points.

Chapter III describes the governing aerodynamic equations for a static airfoil at an angle-of-
attack. The first section gives the governing equations of the fluid dynamics equations in strong
conservation law, nondimensional form. The scales used in nondimensionalization are also pro-
vided in this section. The second section extends the governing equations to include a generalized
coordinate transformation for complex geometries. The third section describes the explicit time-
integration scheme to obtain time-accurate solutions of the governing equations. The fourth section
describes the computational mapping of grids used in the study and provides a complete list of all
the grids used in the research. The fifth section describes the set of boundary conditions for each

boundary. The sixth section details the method of computing force and moment coefficients from
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the solution vector. The last section describes the method of computing directly the equilibrium

solutions for a static airfoil at an angle-of-attack.

Chapter IV presents static airfoil results computed with the methods developed in Chapter III.
The first section is a validation of the computer code by grid sensitivity studies and comparison
with a solution of the open literature. The second section describes convergence properties of the
equilibrium and time-integration methods. The last section presents equilibrium solutions for two
airfoils, the NACA 0012 and the NACA 64A006 for a range of angles-of-attack and freestream

Mach numbers.

Chapter V presents the fluid-structure interaction system, describes changes to the equilib-
rium and time-integration methods to allow airfoil motion, and then presents results. The first
section details the structural model which allows pitch and plunge freedom, the changes to the
governing equations for moving meshes, and modifications to the time-integration and equilibrium
algorithms. The second section presents validation of the modified code and the last section presents
equilibrium solutions for a NACA 64A006 airfoil for various static pretwists and freestream Mach

numbers.

Chapter VI is an important chapter because it develops in detail a new method of directly
computing the stability transition point of a fluid-structure interaction system. The first section
presents the stability transition point system applied to the fluid-structure interaction model de-
veloped in Chapter V. The second section describes the most common method in the literature
to solve the extended system and also presents the limitations of this method when applied to
fluid-structure interaction systems. The last section presents a new algorithm which addresses the

limitations of the other algorithm.

Chapter VII presents results of computations using the new algorithm of Chapter VI applied
to a NACA 64A006 pitch and plunge airfoil model. The first section presents validation of the

algorithm of Chapter VII through time-integration, eigenvalue analysis, and grid sensitivity. The
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second section presents convergence properties of the stability transition point algorithm for var-
ious parameters. The last section presents flutter point results for a variety of aerodynamic and

structural parameters.

Chapter VIII extends the algorithm to include a class of nonlinear structural models. The
first section presents the equations of motion for the modified structural model and the second
section describes validation of the code. The last section presents results for various structural

parameters.

Chapter IX summarizes the conclusions from the current research and provides recommen-
dations for future research. The first section presents a summary and conclusions for each of the

previous chapters. The last section presents recommendations for future research.

There are five appendices which support the main chapters. Appendix A provides a detailed
description of the shock capturing scheme used in the current research. First, the one-dimensional
scheme is presented along with results from a one-dimensional model problem. The model problem
combines the shock capturing scheme with the equilibrium solution scheme to validate the equi-
librium solution approach without any geometric complexities. Next the scheme is generalized to

include two-dimensional geometries with generalized coordinates and moving meshes.

Appendix B provides the formulation of the numerically computed Jacobian elements used in
the equilibrium scheme. Also, results of equilibrium solutions for a two-dimensional model problem

are presented to show the utility and performance of numerically computed Jacobian elements.

Appendix C describes a method of solving linear systems with a “bordered” structure. The
bordering algorithm is an efficient way of solving a system with a large banded portion and a small

number of full rows and columns bordering the banded elements.

Appendix D provides a single location for all of the run summary tables throughout the main
chapters. Also, an estimate of the total number of CPU hours used in the research is provided.

Finally, profile listings of the BGSN5 and BGSN4 codes are provided for comparison.
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Appendix E is a summary of the computer code TVDntiAE, developed in the current research
and a library of routines used by TVDntiAE. Also, information concerning the archived data

resulting from the cases run in this research is provided.
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II. Functional Analysis of Flows with Shocks

Seydel [115] presents an excellent overview of the elements of functional analysis. Relevant
terms and analysis are extracted from [115] and presented in Section 2.1. Next, a method of
extending a nonlinear system of equations to represent a Hopf-bifurcation point is described in
Section 2.2. Finally, a method to obtain solutions of nonlinear systems, Newton’s method, is

reviewed in Section 2.3.

2.1 Elements of Functional Analysis

Nonlinear phenomena associated with solutions to nonlinear equations such as the Euler
equations can be observed geometrically by the use of plots of the solution space. The solution space
plot typically consists of the parameter to be varied, A (e.g., Mach number), on the abscissa and
some scalar measure of the solution, [y] (e.g., the angle-of-attack of the body or the lift coefficient),
on the ordinate. The solution space plot can lead to insight into changes in system behavior with

a change in some parameter value.

Points that make up the solution paths can be classified as solutions to the time-dependent
equations (e.g., steady-state, time-periodic, or aperiodic) or solutions to the time-independent equa-

tions, (e.g., equilibrium solutions). Solutions to the time-dependent equations,

Y: = G(Y;)), (2.1)

for which Y; = 0 in the limit as ¢ — oo are called steady-state solutions. Time-periodic solutions

(or Iimit-cycles [115]), satisfy (2.1) and also

Y(t+T,) = Y(t), (2.2)
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Figure 2.1 Examples of a Limit Point, and Sub- and Supercritical Pitchfork Bifurcation Points

for some period T},. Aperiodic solutions are solutions of (2.1) that do not satisfy (2.2) for any Tj,.

An equilibrium solution can be described as a solution to the time-independent equations,

G(Y;)) =0. (2.3)

Solution space plots may have multiple solution paths (branches) of either limit-cycle or equilibrium
solutions. A bifurcation point is a crossing of two branches with distinct tangents. A pitchfork

bifurcation (Figure 2.1) is an intersection of two branches, with one being one-sided.

There are two types of equilibrium solution points of a continuously differentiable system:
regular points and singular points. A regular point is an equilibrium solution with a nonsingular

Jacobian (i.e., G(Y;}) = 0 and Gy # 0), whereas a singular point (Y;, A,) has a singular Jacobian,

GYI(Y,;;.) = 0. (2.4)

There are several types of singular points, including limit points and singular bifurcation points. A

limit point (Figure 2.1) is a point at which there are no solutions to one side of the point and two




solutions on the other side, locally. A singular bifurcation point, on the other hand, is a point at

which two branches of equilibrium solutions intersect with distinct tangents.

The solution points classified above are either stable or unstable to infinitesimal perturbations
of the system. In general, steady-state solutions are stable, and equivalent to stable equilibrium
solutions. Unstable equilibrium points may exist for which there are no corresponding steady-state

solutions of the time-dependent equations.

A point of transition from stable solutions to unstable solutions (stability transition poini) is of
great interest to designers of systems. Singular points, such as limit points and singular bifurcation
points, are in general stability transition points. Supercritical bifurcations have stable solutions on
both sides of the bifurcation point, whereas, subcritical bifurcations have unstable solutions on both
sides of the bifurcation point. Figure 2.1 depicts super- and subcritical pitchfork bifurcation points,

where a solid line denotes stable solutions and a dashed line denotes unstable solution points.

A bifurcation point that does not satisfy (2.4) but can be a stability transition point is a Hopf-
bifurcation point (Figure 2.2). A Hopf-bifurcation point connects an equilibrium solution path with
a path of stable limit-cycle solutions. Hopf-bifurcation points may also be bistable, which denotes a
change of stability on a single path (Figure 2.3). The periodic solutions are unstable (hollow dots
in Figure 2.3) until a limit point is crossed at which point the solutions can become stable periodic

solutions, solid dots in Figure 2.3.

There are various methods of computing stability transition points. One indirect method is
based on computing a solution of (2.3) and comparing to a solution of (2.1) for ¢t — oco. If the
solutions are equivalent, the branch is considered stable. Through a variation in X the stability
transition point can be bracketed. A direct method of computing a stability transition point is
to expand (2.3) to include conditions that describe the stability transition point. Seydel [115]

presents expanded systems which can be used to compute limit points and singular bifurcation



3
[v] _ o
Stable Time-Periodic
hE
: Unstable
Stable Equilibrium !f e ==
/i J Equilibrillm
[}
> 1

Figure 2.2 Solution Path With A Hopf-Point

vl
Stable Time-Periodic

‘.."Qﬂ:;c e
. |

! RIEE NI Unstable
Stable Equilibrium e R T T
{54l Equilibrium

Figure 2.3 Solution Path With A Bistable Hopf-Point



points. Roose and Hlavacek [111] and Griewank and Reddien [45] develop expanded systems to

compute a Hopf-bifurcation point. The expanded system of [45] is developed in the next section.

2.2 Hopf-Bifurcation System

At a Hopf-point, a steady-state solution transitions to a time-oscillatory solution with zero
amplitude [115]. The Hopf-point can be expressed as an oscillatory perturbation to an equilibrium
solution, Y°:

Y = Y° 4+ ePeft + O(e?), (2.5)

where € is a vanishingly small parameter, P is a coefficient vector, and # is a complex frequency.

Using the assumed form of the solution, G(Y; 5\) can be linearized about Y°:

G(Y;)) = G° + eeP'GY P + O(¢?), (2.6)

where

G°=G(Y%5)), GY=Gy(Y%h). (2.7)

The temporal derivative of (2.5) is

Y; = eBPeP' + O(e?). (2.8)

Substituting (2.8) and (2.6) into (2.1) yields

€BPeP' — G° — eeP'GYL P + O(e?) = 0. (2.9)

Grouping terms of like order gives

0(1): G°=o, (2.10)




O(e):  €fPePt —eeP'GLP =0. (2.11)

Equation (2.10) is the familiar equilibrium problem, and (2.11) can be rewritten in the following

form:

Gy P = 8P, (2.12)

the classic eigen-problem. As seen in (2.12), the coefficient vector, P, is the eigenvector related
to the eigenvalue $# and in general has the complex form P = P, 4 iP;. By examining (2.5), it is
observed that the eigenvalue with the largest real part, evaluated at the equilibrium solution, G°,
determines system stability [115]. If the real part of this eigenvalue is less than zero, the system

is asymptotically stable. If the real part is greater than zero, the system is unstable.

Seydel [115] provides three conditions for a Hopf-point (Y*, 5.*) to exist:

e the time-independent equations are satisfied, G(Y*; :\*) =0,

e the Jacobian matrix Gy = Gy (Y™; :\*) has a pair of purely imaginary eigenvalues with no

other eigenvalue having vanishing real part, f1 = +i© (© # 0),

e the “transversality condition” is satisfied: d%\' (Real [ﬂ(:\)])' #0.

X=5+
If at a point (Y™, 5\*) the above three conditions hold, then from the point emerges a branch of
solutions with limit-cycle behavior and with period 27/©. Figure 2.2 shows a solution path with
a Hopf-point. The solid dots past the Hopf-point in Figure 2.2 are peak values of the limit-cycle
solutions. Using the second condition above, (2.12) can be separated into relationships for the real

and imaginary components of the eigenvector:
GyP, + 0P, =0, (2.13)

GyP; —©P; =0. (2.14)



Equations (2.10), (2.13) and (2.14) are three equations for five unknowns: Y, Py, Py, A, and ©.

The remaining two relationships ensure the trivial solution is excluded [45):

¢'Pi=0, ¢'P=1, (2.15)

where ¢ is a constant normalization vector. In summary, a Hopf-point satisfies the nonlinear system

of equations F(X') = 0, where

- . ' _ . -
GyP, + 0P, P,

F=| gyP,—-0pP | =0, X=|p, |. (2.16)
T Py X
¥ Py—1 O]

2.8 Newton’s Method

Equilibrium solutions of the pitch and plunge airfoil model are computed with Newton’s
method in this investigation. Newton’s method is an iterative, fully implicit method capable of

computing both stable and unstable equilibrium solutions of the nonlinear system (2.3),

G(Y;)) =0. (2.17)

The method is described as follows. Given Y, an initial approximation to the solution vector
Y which does not satisfy (2.17), a new approximation Y**! is found for a specified value of X by

solving the system of equations [151]

Gy(Y”;X) (Y — YY) = —G(Y"; ). (2.18)



One Newton iterate involves computing a solution to (2.18) and updating Y to find Y**+1. Successive

Newton iterates are computed until the L, norm of G,

N
| Glla= 4| > GE(Y 1Y), (2.19)
k=1
satisfies the condition
” G HZS €conv)y (2.20)

where N is the number of unknowns of G and €.ny is specified to be machine precision or some

other tolerably small value. Gy is the Jacobian matrix, which is defined as

(2.21)

Gy = [8G"] .

3Y;
Newton’s method is an attractive algorithm because of its simplicity and its convergence rate. The
method is guaranteed to converge gquadratically if the Jacobian matrix is nonsingular and the initial
guess is sufficiently close to the solution, i.e., within a ball of convergence [56] centered about the
solution point. Quadratic convergence rate can be described as reducing the error twice the number

of digits past the decimal for each successive iteration. Solutions to (2.17) are generally obtained

in ten iterations or less.
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III. Transonic Flows About Fized Airfoils

To model accurately complex shock wave motion occurring over airfoils at transonic speeds,
the Euler equations must be used [40]. Solutions to the Euler equations can be computed in a
variety of ways, but a class of high-resolution upwind total-variation-diminishing (TVD) schemes
has recently become very popular for this purpose. In particular, flows with discontinuities can be
computed accurately by these TVD schemes. Harten [50] presents a class of explicit, second-order-
accurate, highly nonlinear difference schemes. This chapter presents the governing equations and
application to the two-dimensional, static airfoil at angle-of-attack. First, the governing equations
to be solved are described. Next, the splitting form of the TVD numerical scheme is presented,
leaving the details to Appendix A. Also, the computational grid and boundary conditions are
described. Finally, a method of computing an equilibrium solution of the TVD numerical scheme

is presented.

3.1 Governing Equations

The Euler equations are statements of the conservation laws for mass, momentum, and energy
for an inviscid, non-heat conducting flow. When the Euler equations are arranged such that the
conserved variables p, pu, pv, and E,; are dependent, the conservative form of the gasdynamic
equations is obtained. The conservative form is necessary (not sufficient) when computing flows
with discontinuities for the discontinuity to represent a physical wave when shock capturing schemes
are applied. The method used to ensure sufficiency by eliminating nonphysical shocks is presented
in Appendix A. The governing equations are written in the following vector form:

o0  9F(0) | 8G(T) _
5 o T oy =0 (3.1)

where U contains the dependent variables p, pu, pv, and E;. The term F contains the fluxes

differentiated in (3.1) with respect to «, and the term G contains the fluxes differentiated in (3.1)
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with respect to y. The elements of U, F', and G are

p pu pv

_ pu _ (pu)?/p+p 3 pou

U= , F= , G= (3.2)
pv puv (pv)?/o+p
E, (E: +p)pu/p (Bt +p)ov/p

The equations of state for a perfect gas with constant specific heats ¢, and ¢, are

24,2
plu” +v
p=(—-1pe=(y-1) [Et - (_—f_)] , (3.3)
r
y=-=+, e=¢T. (3.4)
Cy
The primitive variables are nondimensionalized by the scalings
tVe z Y u v p T e
= * * _ J o _ Yo pr=— T = —, *=—, (3.5
o TEp Y=o wEgs V=g v = T € V‘%()

where c is the airfoil chord length, V. is the magnitude of the freestream velocity vector, poo is the
freestream density, and To, is the freestream temperature. The * notation of this section denotes
a nondimensional variable. These particular scalings allow the equation of state (3.3) to remain

unchanged in nondimensional form and the internal energy-temperature relationship to become

* T*

After dropping the * superscript from the non-dimensional quantities for notational simplicity,
the governing equations and the definitions of U, F, and G in nondimensional form are equivalent

to (3.1) and (3.2). Future references to (3.1) are considered to be the nondimensional form.



3.2 General Coordinate Transformation

Due to the complexity of the airfoil geometry, a general spatial transformation of the form
¢ = &(z,y) and n = n(z,y) is used to transform (3.1) from the physical domain (z,y) to the
computational domain (£,7) [150]. The advantage of this approach is the ability to use a body-
conformal mapping, which makes implementation of boundary conditions much easier. Section 3.4

discusses the particular conformal mapping of points, or grid, to be used.

Through spatial transformation of the governing equations, (3.1), the following vector form

is obtained:

aU  8F(U) 8G(U
9% L ()+ ) _

ot t o a0 (37)
F(0) = (& F(0)+&G0)/T, GU)=mFU)+nG0)/T, (3-8)
U= [_J/J, J= £x77y - €y7lar; (39)

where J is the Jacobian of the transformation, and 5, &, 7z, and ny are the transformation metrics

(subscript denotes differentiation with respect to the subscripted variable).

Figure 3.1 displays the relationship between the (£,7) coordinates and the (7,j) indices. By
assumption

Af = An=1, (3.10)

for a unit change in either coordinate direction index.

3.8 Time-Integration Scheme

Equation (3.7) is solved by employing an explicit algorithm that splits the multidimensional

finite-difference algorithm into a sequence of one-dimensional operations [2]. The resulting algo-
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Figure 3.1 Computational Domain and Index Definition

rithm is described as

~n

~ ~ L3 ’zn
L7y = U3 =07y — A (Gz',j+‘ - Gi,j—%) ’

i.J i L 3

5+%1j i_'gf')]

A A A ~n+1/2 <n+l/2
quir,?l/z = Ui',lJ:H - Uirfflm ~ At (F' L ) )

with

Uit = Le LU

Equation (3.13) defines an explicit iteration valid for

1<i<I, and 2<j<J—-1.

(3.11)

(3.12)

(3.13)

(3.14)

The superscript n+1/2 denotes an intermediate stage in the time integration, n denotes the current

time level, and n+1 denotes the current time level plus the time step, At. Equation (3.13) describes

an O(At, Az?, Ay?) method of updating the flowfield variables. The definitions of I~3' and é can

be found in Appendix A. Figure 3.1 also presents the stencil of dependent variables necessary to




compute (3.11)-(3.13). The cases for which the computational stencil extends outside of the domain

in the 7 direction are covered in Appendix A, and the £ direction in Subsection 3.5.4.

3.4 Computational Grid

It is necessary to specify the discrete distribution of points over which the equations are solved.
The chosen grid structure for this work is an “O”-grid topology. The trailing edge of the airfoil is
replaced with a circular arc that matches the slope of the airfoil shape at some percentage of chord
(i-e., 98% or 99%) to facilitate the “O”-grid topology. Figure 3.2 shows the relationship between
the rounded trailing-edge airfoil and an airfoil with a sharp trailing edge. The length of the two
airfoil types differs by Ate. The cut in the “O”-grid is placed along the chord line starting at the
leading edge and ending at the outer edge of the domain. The grids are generated with GRIDGEN,
an elliptic grid generator [126]. A circle of radius Ry, with a uniform node distribution is specified
as the outer boundary. The surface distribution is specified with GRIDGEN to provide clustering
at high curvature. The inner and outer grid edges are connected with Vinokur progression [126]
having an initial spacing at the airfoil surface of Awall. The elliptic solver is used to enforce
orthogonality at the domain edges. A representative grid for a NACA 64A006 airfoil is depicted
in Figures 3.3 and 3.4. A discussion of the basis for choosing an “O”-grid over a “C”-grid for the

current research is presented in Subsection 3.7.

Two airfoils are used throughout the research. The NACA 0012 is used because of the wealth
of static airfoil data available in the open literature. It is a 12% thick, symmetric airfoil. The
circular arc trailing edge is placed at 99.5% chord and results in an airfoil which is 99.55% chord
in length. The NACA 64A006 airfoil is chosen because of the pitch and plunge time-accurate data
available for comparison. It is a 6% thick symmetric airfoil. The circular arc trailing edge is placed
at 98% chord due to the thickness of the airfoil and results in an airfoil 98.13% chord in length.

Table 3.1 is a summary of the grids used throughout the research.



Grid# I I | J IRmaa: I Awall

NACA 0012 Airfoil

G12-1 80 | 120 | 100 | 0.001
G12-2 80 | 80 50 0.001
G12-3 80 | 64 25 0.001
G12-4 80 | 60 20 0.001
G12-5 80 | 56 15 0.001
G12-6 80 | 42 10 0.001
G12-7 80 | 42 10 0.003
G12-8 80 | 42 10 0.005
G12-9 80 | 32 10 0.005
G12-10 | 80 | 16 10 0.005
G12-11 | 160 | 32 10 0.005
G12-12 | 120 | 32 10 0.005
G12-13 | 80 | 32 10 0.005
G12-14 | 80 | 32 10 0.005
G12-15 | 80 | 32 10 0.005
G12-16 | 80 | 32 10 0.005
G12-17 | 80 | 32 10 0.005
G12-18 | 320 | 64 25 0.001
NACA 64A006 Airfoil
G646-1 | 100 | 31 15 0.015
G646-2 | 100 | 15 10 0.001
G646-3 | 100 | 15 10 0.015
G646-4 | 100 | 31 15 0.005
G646-5 | 100 | 15 10 0.005
G646-6 | 60 | 15 8 0.015
G646-7 | 60 | 15 8 0.005
G646-8 | 60 | 15 10 0.005
G646-9 | 60 | 13 4.1 0.005
G646-10 | 30 9 6 0.005

Table 3.1 Grid Definitions
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Figure 3.3 Representative Grid (NACA 64A006 Airfoil)
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Figure 3.4 Node Distribution Near NACA 64A006 Airfoil (Representative Grid)

8.5 Boundary Conditions

A mapping is performed from the z — y physical domain to the £ — n computational domain,
as depicted in Figure 3.5. Boundaries A and C of Figure 3.5 are referred to as cuts and actually are
not boundaries in the physical domain. Boundary B is broken up into three segments; B1 and B3
are inflow boundaries and B2 is an outflow boundary. The ranges of B1, B2, and B3 are governed

by the sign of the contravariant velocity component normal to the grid:

V = ngu+ nyv. (3.15)

Grid points with V > 0 (which may change over the course of the calculation) are in segment B2
and the other points on boundary B are in either B1 or B3 depending on their location. Boundary
D defines the airfoil surface. The conditions enforced along these boundaries is the subject of this

section.
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Figure 3.5 Relationship Between the Physical and Computational Domains

3.5.1 Farfield Inflow Boundary Conditions. The inflow conditions related to surfaces Bl
and B3 are specified to be freestream conditions. Therefore, the governing equation along B1 and

B3 can be written as

Ut = U, (3.16)
where _ -
1
) 1
Uy = . (3.17)
0
1 1
| 7o-naz t T

The discrete form of (3.16) is written in a delta form to maintain consistency between the discrete

boundary condition and the interior equations:

Uryt=0r; - At [é(ﬁ;}, - Uoo)] , (1<i<1I and V<0). (3.18)



3.5.2 Farfield Outflow Boundary Conditions.  Three of the outflow conditions are evolu-

tionary forms of the conditions p, = 0, (pu); = 0, and (pv), = 0:

fetuf: =0, (3.19)

where f = [p, pu, pv]T. The fourth outflow condition is a specification of total energy to be the

freestream value. The form of the discrete equations is
uly
=t - A [‘T {EoigASE s + M0 g BTy —4F7 1 + ff,LJ-z)}] ; (3.20)

n 1
B} = By — At [E(Et?,.r - Etoo)] ; (3.21)

for1 <i<TIandV >0. The form of Af is

3ffy —4aff ,+ for &, ;>0
Af{:J: i,J i-1,J i—2,J zi,J ) (3'22)

=3f st A — ey forés; ;<0

3.5.8 Aurfoil Surface Boundary Conditions. The boundary condition at the airfoil surface
appropriate for the Euler equations is flow tangency. Figure 3.6 shows the relationship between
the normal and tangential velocities at the airfoil surface, u} and v/, and the primitive variable
velocities, u, and v, in the airfoil fixed coordinate system. Flow tangency (or impermeability)
specifies the condition on the surface v}, = 0. The remaining three conditions are ad-hoc conditions

used commonly in the literature:

S = 0, —= 0, —=0. (323)
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Figure 3.6 Grid Point-Surface Geometry

Manipulations of (3.23) produce conditions on the conserved variables

o _, O

on 8n=0'

In summary, the airfoil surface boundary conditions are

ou! dp oL,
=0 =0, —=0, —=0.
“E5 0 T T on

(3.24)

(3.25)

The airfoil surface boundary conditions are implemented by assuming the surface lies be-

tween the first and second row of points (as depicted in Figure 3.6). Applying central-difference

approximations to the Neumann conditions in (3.25), the following second-order-accurate discrete

equations are obtained:

_ _ ro_
Pig =pi2, Biya=Eya, Ui =,

3-11
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Expressing the surface velocity in terms of the points adjacent to the surface (Figure 3.6), the

following first-order-accurate expression is obtained:
/ 1 / /
Vs = 5(”;’,1 + v 5). (3.27)
Applying the impermeability condition of (3.25), (3.27) becomes

'U; 1= —vé’z. (3.28)

(3.29)

The variables u. and v, are evaluated at the first row of nodes (j = 1) with a coordinate rotation

as depicted in Figure 3.6 [93]. The relationship between (ue,v.) and (u/,v') is

o cos® sind Ue
= , (3.30)
v —sin® cosO© Ve
where © is the local slope angle of the body. Combining (3.29) and (3.30), (3.29) becomes
cos® sin® Uej 1 1 0 cos® sin® Ues 2
= , (3.31)
—sin® cos© Vei1 0 -1 —sin® cos® Vei 2
which can be rewritten as
Uei 1 t1(0) 3(O) Uei 2
= , (3.32)
Vei 1 12(0) —t1(6) Vei,2
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using the definitions

t1(B) = cos? B —sin® B, t2(8) = 2cos Bsin b, (3.33)

for some arbitrary angle 3.

The velocities on the surface are now in the airfoil fixed reference system. To obtain the
inertial velocity components, denoted by a subscript in, the following relationship is used:
U cosae —sina Uiy
= . (3.34)
Ve sine coso Vin
Substituting (3.34) into (3.31), multiplying by the density, and operating on the result with the
inverse of the direction cosine matrix, the variables (pu); 1 and (pv);; are found to be

(pwin | _ [ 11(@)ti(®) +ta(a)t2(®)  t1(e)t2(®) = ta(e)ta(8) (pu)iz . (3.35)

()i t1(@)t2(0) — t2()t1(©)  —t1(a)t1(®) — ta(a)t2(O) ()i,
where the boundary condition, p; ;1 = p;,2 is used to maintain only (¢,2) data on the right hand
side. The equations for p;; and E; ; in (3.26) and equation (3.35) yield a complete set of surface

boundary conditions valid for 1 <7 < I.

3.5.4 Cut Boundary Conditions.  The cut boundaries A and C are interior lines of nodes
in the physical domain (see Figure 3.5). The interior equations, (3.11)-(3.13), are applied along
these boundaries to allow consistency with the interior equations. Unfortunately, the stencil of
conserved variables extends outside of the domain for these boundaries and for interior equations
with ¢ = 2 and i = I — 1. The stencil variables with indices which have no physical meaning are

mapped to values in the domain in the following way:

Uo1j=Ure1j, U0 =Urg, Urprj =01, Urpaj=Uay, (3.36)
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forall1<j<J.

3.6 Calculation of Force and Moment Coefficients

The force and moment coefficients are computed with numerical integration of the surface
pressures. The pressure at a node on the surface is computed with a simple average of the neigh-

boring pressures

1
Ps; = g(Pm +pi2) (3.37)

The pressure along the surface between two nodes is assumed to be constant and given by

1
Pmid; = 5(1’3,‘ + p,iﬂ). (3.38)

The components of the distance between two surface nodes is

1 1 1 1
dei = o(@irin + 2ig) — 5@+ 2i2), g = S +%ie2) — 50 +32). (3:39)

The lift coefficient can then be expressed as [138]

I I
C)=—2cosa Z Pmid;dz; — 2sina Z Pmid;dY;. (3.40)

i=1 i=1

The drag coefficient can be written as [138]

I I
Cy= ZCOSQmeid,-dyi - 2sina2pmid,~d:c,~. (3.41)

i=1 i=1
The moment coefficient about the cg is expressed as [138]

I
Cm=2 meidi (d-’ﬂi‘ccg + dyiycg) . (3-42)

i=1
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The subscript ¢ = I 4+ 1 implies ¢ = 1 in (3.40)-(3.42).

3.7 FEquilibrium System

The discrete form of the governing equations discussed in Chapter II is defined

U, = F(U).

(3.43)
Equations (3.11)-(3.13) are placed in this form by defining

_ 1 _
F,. = U::]+ — U[:J
k= At )

(3.44)
for 1 <i< 1T and?2<j<J-1. Thisimplies that F} for the interior and cut equations becomes

o o ‘71.’]. ~n ~n ~n+41/2
Fie = (LeLnUf; = Ul) Ry = =i |(Gijay — Gij-p) + (

~n+1/2
Fi-l—%,j —Fi—-%,j )] . (3.45)
determines the collocation strategy and is defined from

0. Fy is an R* vector and the index k of Fj

Applying the assumption of equilibrium, F}

k=(G-1)J+j for 1<i<I, 2<j</J,

(3.46)
for the column-row strategy, (i.e., indexing by columns) employed for this research. The farfield
boundary conditions are placed in the same form and are defined with

o
P U -
k At

[ 2 -0.].

(3.47)
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for 1 <i < I, and V < 0, (boundaries Bl and B3). The outflow outer boundary equilibrium

equations are defined with

Opft =02y | =5 &g AT +nei s BFL =4+ £ o)}

At ’
— (B ;- Bro)

(3.48)

for 1< i< I, and V > 0 (boundary B2). The surface boundary conditions, (3.26) and (3.34), are
used to compute the fluxes for the first row of nodes inside the domain and are not included in
the fully implicit system. The set of R* unknown vectors, {_];’j, and equilibrium equations, F}, are
placed in the RN vectors U and F respectively, by incrementing k from 1 to the total number of
equations, N:

N =4I(J - 1). (3.49)

The equilibrium system is then described by

F(U;}) =0, (3.50)

where X is some free parameter of the system, such as M., and is solved with Newton’s method

(described in Chapter II).

The Jacobian matrix, Fyr, is an integral part of the Newton’s method solution process. The
equations near the cut access conserved variables across the cut, whereas the conserved variables
of the remaining equations are all within a narrow bandwidth of each other. For this reason, the
equations near the cut are blocked off from the other equations, resulting in a Jacobian matrix of

the form

Fy = : (3.51)



where A is a banded system with a bandwidth, Aj,,, given by

Apy = 16(J — 1) + 25. (3.52)

If a row-column collocation strategy is employed, J in (3.52) is replaced with I. It is apparent that
since J is usually a fraction of I, the bandwidth is smaller for a column-row collocation strategy.

The number of elements of F in the cut region is found to be

Nowt = 8(J —1). (3.53)

The row x column dimensions of A, B, C, and D are then

A: (N = Newt) X (N = New), (3.54)
B: (N = News) X (News), (3.55)
C: (Newt) X (N = News), (3.56)
D: (Neut) X (Neut)- (3.57)

Chapter II presents the linear system describing a single Newton iterate, (2.18). A method of
solving (2.18) efficiently for the Jacobian matrix structure of (3.51) is described in Appendix C and

is employed in the current research.

The original version of TVDntiAE, the current research computer code, employs a row-column
strategy, since with row-column indexing the blocked linear system solver of Appendix C is not
necessary. With row-column indexing, the size of I defines the bandwidth. A “C”-grid topology
has on the order of twice the number of elements in I as a result of the region aft of the airfoil, while
maintaining a similar J. Thus, the bandwidth of the Jacobian is therefore larger for a “C”-grid

than that of A of an “O”-grid. This additional bandwidth is the original basis for choosing an
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“O”-grid. In addition, a “C”-grid has clustering in the wake region of the airfoil as a result of the
topology. Since the Euler equations are used for the current research, grid point clustering in the

wake region is not necessary and therefore adds to the computational resource requirements.
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IV. Static Airfoil Results

With a computer code based on the model described in Chapter III (called TVDntiAE), code
validation is accomplished. The validation procedure is a comparison of solutions for a variety
of grids and parameters of the algorithm. Also, a comparison of the solutions obtained with the
current method and a solution from the open literature is made. Next, convergence properties of
the explicit method and the equilibrium method are documented, as well as the consistency between
the two methods. Finally, equilibrium solutions are presented for NACA 0012 and NACA 64A006
airfoils at various Mach number and angle-of-attack conditions. These solutions are included to

document the code’s ability to compute solutions for ranges of M, and a.

4.1 Algorithm Validation (Equilibrium Solutions)

This section presents the algorithm validation comprised of a sensitivity analysis and com-
parison with an AGARD [140] study computed solution from the open literature for a static NACA
0012 airfoil. All flowfield solutions are for M, = 0.8 and & = 1.25° to provide consistency with

the AGARD solution.

4.1.1 Grid-Sensitivity Study.  The effects of grid refinement are presented for variations in
domain size, R4z, wall spacing, Awall, the number of nodes in the normal direction, J, and the
number of nodes around the airfoil, I. Also, the TVD parameter §; and the Courant number, vy,
defined in Appendix A, are varied and the effects on the flowfield solution documented. Table 4.1
describes all of the grids and parameter values used in the sensitivity study, each of which is assigned
a case number. Solutions for cases 1-17, were obtained with the Newton-TVD algorithm converged
to an Ly norm of the residual, ||F||2, less than €cony (10712). The coefficient of lift, Cy, is used as
the sensitivity metric in the validation study. Also, the effect of varying grid and TVD parameters

on the surface coefficient of pressure, Cp, is documented.




Case# | Grid# I J | Rpas | Awann | 61 Vet C Type
1 G12-1 | 80 | 160 | 150 | 0.001 0 0.5 | 0.3452 | TI
1a G12-1 | 80 | 120 | 100 | 0.001 0 0.5 | 0.3432 | EQ
2 G12-2 | 80 | 80 50 0.001 0 0.5 | 0.3286 | EQ
3 G12-3 | 80 | 64 25 0.001 0 0.5 | 0.3211 | EQ
4 G124 | 80 | 60 20 0.001 0 0.5 | 0.3173 | EQ
5 G12-5 | 80 | 56 15 0.001 0 0.5 | 0.3084 | EQ
6 G12-6 | 80 | 42 10 0.001 0 0.5 | 0.2997 | EQ
7 G12-7 | 80 | 42 10 0.003 0 0.5 | 0.2935 | EQ
8 G12-8 | 80 | 42 10 0.005 0 0.5 | 0.2877 | EQ
9 G12-9 | 80 | 32 10 0.005 0 0.5 | 0.2871 | EQ
10 G12-10 | 80 | 16 10 0.005 0 0.5 | 0.2700 | EQ
11 G12-11 | 160 | 32 10 0.005 0 0.5 | 0.2954 | EQ
12 G12-12 | 120 | 32 10 0.005 0 0.5 [ 0.2918 | EQ
13 G12-13 | 80 | 32 10 0.005 | 0.01 | 0.5 | 0.2871 | EQ
14 Gl12-14 | 80 | 32 10 0.005 | 0.1 | 0.5 | 0.2871 | EQ
15 G12-15 | 80 | 32 10 0.005 | 0.5 | 0.5 | 0.2871 | EQ
16 Gl12-16 | 80 | 32 10 0.005 0 0.4 |0.2871 | EQ
17 G12-17 | 80 | 32 10 0.005 0 0.6 | 0.2871 | EQ
18 G12-18 | 320 | 64 25 0.001 0 0.5 | 0.3432 TI

Table 4.1 Case Definitions for Sensitivity Analysis

First, the domain size, Ry,qs, is varied to determine its effects on the flowfield solution. The
domain size is varied from a radius at the farfield boundary of 150 chord lengths to 10 chord
lengths (cases 1-6), by excluding all points outside of the desired farfield radius. This method of
producing grids has the advantage of holding all other grid parameters fixed. Figure 4.1a displays
the surface coefficient of pressure versus the coordinate along the chord line for various domain
sizes. The difference in pressure coefficient is primarily confined to three points, typical of TVD
algorithms. The largest difference is found in the upper surface shock at the middle point. Shock
capturing methods do not resolve the shock completely and, therefore, errors at the middle point
are expected, especially when first-order dissipation is applied at the shock. The first and last
points are practically the same for all domain sizes with the middle point having a large variation.
As Rpap increases, C, of the middle point increases, trending toward matching the upstream state
of the shock. This effectively moves the upper shock position aft by one grid point. The strength

of the lower surface shock decreases and the position moves forward as Ry,q, increases.
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Figure 4.1 Sensitivity to Outer Domain Size

The coefficient of lift varies by 13.2% from the largest to smallest domain size. Figure 4.1
depicts the variation of C; with domain size. A definite slope change in Cj(Ryqz) is observed

between Rynqr = 20 and Ryar = 25 chord lengths.

The effects of wall spacing on the flowfield solution are next examined. The surface is assumed
to be between the first two normal nodes. Since the surface boundary conditions consist of Neumann
conditions in discrete form, which are a function of Awall, a strong sensitivity to Awall is expected.
The wall spacing is varied from 0.001 to 0.003 and then to 0.005 in cases 6-8 with R,,.; = 10.
Figure 4.2a displays the surface coefficient of pressure for the three wall spacings. The various
solutions are in good agreement for the majority of the points. The largest difference is seen at the
leading-edge and trailing-edge points. A moderate difference in pressure coefficient can be seen for
two points in the embryonic shock on the lower surface. The coefficient of lift varies by 4.0% from
the coarsest to finest wall spacings. Figure 4.2b shows that C; monotonically increases as Awall

goes to zero.

In cases 8-10, the number of nodes in the normal direction is varied from 16 to 32 and
then to 42 to determine the effects of radial refinement, holding Rp,q4r = 10 and Awall = 0.005.

Figure 4.3a shows the pressure coefficient comparison. Solutions for J = 42 and J = 32 show
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Figure 4.3 Sensitivity to Node Quantity in Normal Direction

no practical differences with a lift coefficient variation of only 0.2%. The solution for J = 16 is
different from the other two solutions in the expansion regions above and below the airfoil. Also,
the shock positions on the upper and lower surfaces vary by approximately one grid point or 0.04
chord lengths. The overall variation in lift coefficient for the three grids is 6.1%. As J increases,

Ci(J) increases (Figure 4.3b).

The node distribution around the airfoil is varied to determine the effect on the flowfield
solution. The number of nodes is varied from 80 to 120 and then to 160 with cases 9, 11 and 12.

The majority of the difference in pressure coefficient is seen at the upper and lower shock and at
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Figure 4.4 Sensitivity to Node Quantity Around the Airfoil

the trailing edge point. All three solutions predict the same upper shock location and strength with
a variation in the shock middle point. The lower shock strength and position varies slightly with
a trend toward a stronger shock with refinement. The variation in the lift coefficient for the three

solutions is only 2.8%, with a monotonically increasing behavior as I is increased (Figure 4.4b).

In addition to the grid-sensitivity study, the sensitivities of the flowfield solution to the TVD
entropy correction parameter, 6; and the maximum (or critical) Courant number, v.;, are pre-
sented. The TVD parameter 6; is varied from 0 to 1/2 in cases 9 and 13-15, resulting in a minimal
variation in Cj of 0.2%. Since §; has minimal effect on the solution, a value of zero is used for all
other validation cases. This value of §; is consistent with the Roe scheme. v, 71 is varied from 0.4 to
0.5 and then to 0.6 in cases 9, 16 and 17, resulting in a 1.1% variation in Cj. Since v, 71 had minimal
effect on the solution, and v.¢; = 1/2 provided the best convergence of the TVD time-integration

algorithm, this value is used for all other validation cases.

Results of all sensitivity studies are summarized in Table 4.2. Variation of parameter values
in the direction of improved refinement and increased domain size always increased C;. Overall,
comparison between the best and worst cases (1 and 10) shows a 22% variation in C;. The parameter

of greatest sensitivity is seen to be the domain size, Rp,ar. When Ryqp is decreased by 93% from
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Parameter | Min-Max Values | C; Variation
Ryas 10-100 13.2%
Ayant 0.001-0.005 4.0%

J 16-42 6.1%
I 80-16 2.8%
5 0-0.5 0.2%
l/cﬂ 0.4-0.6 1.1%
All Worst-Best 22%

Table 4.2 Summary of Sensitivity Evaluations

its maximum value, Cj is decreased by 13.2%. Furthermore, the results indicate that C; asymptotes

only for Rpyar > 150. Rpgy is judged to be the most limiting parameter, in terms of accuracy.

4.1.2 Comparison with AGARD Solution. Further validation of the method is accom-
plished through comparison with a solution from the open literature. An AGARD solution [140],
which is deemed the best of a set of solutions by the authors of the study, is used to provide the
comparison. To compare directly (i.e., with similar grids) the current method with the AGARD
solution, grid G12-18 with 6, = 0 and v.5; = 1/2 is employed. Due to resource limitations as-
sociated with the Newton-TVD method, the TVD time-integration algorithm is used, converged
to an L, norm of 10~ The larger cutoff criterion is due to poor convergence properties of the
time-integration method. Section 4.2 presents a discussion of the algorithm convergence proper-
ties as well as a discussion of the acceptable €.on,. Figure 4.5 presents the coefficient of pressure
distribution on the surface for the TVD time-integration solution (case 18), the solutions of cases
7 and 10, and the AGARD data set. The upper surface shock is captured in three grid points
for cases 7, 10, and 18, whereas the AGARD solution requires five points. The location of the
AGARD shock is slightly downstream of the solutions from the current method. As described in
Section 4.1.1, the trends in TVDntiAE solutions for an increasing domain size are the upper surface
shock moves aft, and the lower surface shock weakens and moves forward. It is apparent from the
tabulated AGARD data [140] that the conditions (3.17) are not enforced at the farfield boundary.

The boundary conditions of the AGARD solution can cause an effectively larger domain size and
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Figure 4.5 Surface Cp: My = 0.8 and o = 1.25°

therefore have a more aft shock on the upper surface and a weaker forward shock on the lower
surface. There is also an offset in the expansion regions of the upper and lower surfaces, resulting
in a higher overall lift for the AGARD solution than for the current solutions. The most refined
TVDntiAE solution predicts C; = 0.3452, whereas for the AGARD solution, C; = 0.3632 (a 5.2%
difference). Figure 4.1b shows a trend of increasing domain size increasing to the AGARD solution.
Since it is not practical computationally to continue the domain size study, no further attempt is

made to determine the asymptotic value of C; using the TVD time-integration method.

4.2 Convergence Properties of Newton-TVD and TVD-Time-Integration Algorithms

In this section, steady-state solutions are computed for a NACA 64A006 airfoil using grid
(G646-2 with both algorithms to demonstrate their convergence properties. Also, the convergence
properties are investigated for a variation in the numerical Jacobian parameter, €;4.. The flowfield

conditions are M, = 0.85 and a = 0°.

4.2.1 Newton-TVD and TVD-Time-Integration Comparison. A comparison of the Newton-

TVD and TVD-time-integration methods is provided to describe the consistency in the solutions




Case | Grid# | M | o | €jac | Type
19 G646-2 [ 085 [ 0° [ N/A | TI
20 G646-2 [ 0.85 | 0° [ 1075 | EQ
21 G646-2 | 0.85 [ 0° | 1073 | EQ
22 G646-2 [ 0.85 [ 0° | 10-% | EQ
23 G646-2 [ 0.85 [ 0° [ 10°% | EQ
24 G646-2 [ 0.85 [ 0° [ 10-7 | EQ
25 G646-2 | 0.85 [ 0° | 10~ | EQ

Table 4.3 Convergence Properties Run Summary

Iterations Iterations Iterations Iterations
15 50,000 15 - 50,000
- 40,000 - 40,000
10} 10
- 30,000 (- 30,000
- 20,000 [ 20,000
5 5|
- 10,000 . . - 10,000
—— TVD Time Integration —— TVD Time Integration
—8—Newton-TVD.
—&— Newton-TVD
! 1 1 ! 1 1 1 ! 1
10? 10° 10* 10° 10° 107 10* 1.00 1.05 1.10 115 1.20
L, Norm of Residuals Maximum Mach Number

Figure 4.6 Convergence Histories of Newton-TVD and TVD-Time-Integration Algorithms

and their respective convergence properties. The flowfield is initialized with freestream values and
then the time-integration algorithm is used to compute a solution to a residual norm of 10~3. This
solution is then used to initialize both the Newton-TVD and TVD-time-integration algorithms
and solutions are computed. The numerical Jacobian parameter for the Newton-TVD algorithm
is €joc = 1075, Figure 4.6 depicts the convergence histories for the two algorithms. The TVD-
time-integration method converges with a linear rate typical of explicit TVD schemes in 50,000
iterations to a residual norm of 9 x 1076, In approximately 20,000 iterations the peak Mach num-
ber has reached its asymptotic value of 1.105, corresponding to a residual norm of 6 x 105, The
Newton-TVD algorithm computes a solution in 14 iterations to a residual norm less than 103.
The asymptotic value of peak Mach number, 1.105, is reached in 10 iterations, corresponding to

a residual norm of 3 x 10™%. The convergence rate is not formally quadratic, but it is linear with
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the number of iterations on the order of a quadratic method. The author attributes this degraded
convergence behavior to two constraints. First, the computed strong shock violates one of the
Newton’s method criteria of continuous differentiability [151]. Second, the Jacobian elements are
not exact; they are numerical approximations of the analytical Jacobian elements. The two solu-
tions are considered consistent with each other when considering the peak Mach number as the

comparison metric.

4.2.2  Variation of Numerical Jacobian Parameter. The effects of the non-exact numerical
Jacobian elements are documented in this subsection. The details of computing numerical Jacobian
elements are provided in Appendix B. The numerical Jacobian is a second-order-accurate finite-
difference approximation. The parameter, ¢jq., defines the order-of-error of the approximation
and is also the divisor of the finite-difference approximation. To document the effects of ¢;q,
solutions are computed for 1073 < €4 < 107% and depicted in Figure 4.7. The convergence
history for €j,. = 10~° has the best slope of all solutions computed and reaches machine precision
at approximately 20 iterations. The convergence history for €;q,. = 10~3 asymptotes to a residual
norm greater than 10=% which is much larger than machine precision, displaying the effect of
truncation error on the Jacobian elements. When ¢jq. = 10—, the solution does not converge
in twenty iterations, but appears to be converging towards the solution for €j,. = 1075. The
convergence history for ¢;4, = 10~ is degraded from the €jae = 10~5 history and reaches a residual
norm of 10~12 in twenty iterations. The €4, = 1077 and €;4, = 103 histories again asymptote to
a residual norm of 10~¢ due to round-off error. The optimum €jac 1s found to be 10~5 and is used

for all calculations in this research unless otherwise specified.

4.8 Variation of Mach Number and Angle-of-Attack

This section presents equilibrium solutions for the two airfoils, NACA 0012 and NACA

64A006, at various Mach numbers and angles-of-attack. The purpose of the solutions computed in
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Figure 4.7 Convergence Histories for Various Numerical Jacobian Accuracies (Newton-TVD)

this section is to provide comparison and demonstration data for the chosen numerical algorithm.
The NACA 0012 solutions are computed with grid G12-13 and the NACA 64A006 solutions are
computed with grid G646-1. For all solutions, 6; = 0 and v.y; = 1/2. The effects of varying the
freestream Mach number and angle-of-attack on the flowfield are assessed using contour plots of the
local Mach number. Also, Ci, C4, and Cpn /4 versus angle-of-attack are presented for the NACA

64A006 airfoil.

4.8.1 NACA 0012.  Solutions for various Mach numbers and angles-of-attack are presented
for the NACA 0012 airfoil. The freestream Mach number is varied from 0.63 to 1.2; Mach contours

are displayed in Figure 4.8. The angle-of-attack is held fixed at 1.25°.

Figure 4.8a depicts the flowfield solution for My, = 0.63. Supersonic flow is not evident for
this freestream Mach number. The freestream Mach number is increased to 0.80 (Figure 4.8b). A
strong shock is found on the upper surface slightly aft of the mid-chord, and an embryonic shock is
observed on the lower surface near the quarter-chord. The freestream Mach number is increased to

0.95 and the the upper and lower shocks strengthen and move to the trailing edge (Figure 4.8c). The
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Case# | Grid# | My a Type
26 G12-13 | 0.63 1.25° EQ
27 G12-13 | 0.80 1.25° EQ
28 G12-13 | 0.95 1.25° EQ
29 G12-13 | 1.20 1.25° EQ
30 G12-13 | 0.80 0° EQ
31 G12-13 | 0.80 5.0° EQ
32 G12-13 | 0.80 10.0° EQ
33 G646-1 | 0.85 0° EQ
34 G646-1 | 0.85 1.25¢ EQ
35 G646-1 | 0.85 5.0° EQ
36 G646-1 | 0.85 10.0° EQ
37 G646-1 | 0.85 | 0—5.75° | EQ

Table 4.4 Run Summary: Variation of M, and o

supersonic region extends well into the domain. When the freestream Mach number is increased to
1.2, a bow shock forms in front of the airfoil and a pocket of subsonic flow develops between the

bow shock and the leading edge of the airfoil (Figure 4.8d).

Next, the airfoil angle-of-attack is varied from 0 to 10 degrees, while fixing the freestream
Mach number at 0.80. Mach contours are displayed in Figure 4.9. Figure 4.9a depicts the flowfield
solution for o = 0°. Symmetric shocks are in evidence above and below the surface at approximately
mid-chord. The supersonic region extends approximately a half-chord length into the domain. The
angle-of-attack is increased to 1.25° (Figure 4.9b), which is the same case displayed in Figure 4.8b.
For an angle-of-attack of 5°, the lower surface shock is not in evidence and the upper shock is farther
aft and strengthened (Figure 4.9c). The supersonic region extends more than a chord length into the
domain. The angle-of-attack is increased to 10° and the shock position is not changed significantly

but the shock strength increases and the supersonic region increases in size.

4.3.2 NACA 64A006. Solutions for various angles-of-attack are presented for the NACA
64A006. Mach contours for selected angles-of-attack (0°, 1.25°, 5%, and 10°) are computed and are
displayed in Figure 4.10. The freestream Mach number is fixed at 0.85. Also, Cj, Cy and Cp,; Jac

versus angle-of-attack for a range of « is displayed for Mo, = 0.85.
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(a) M_=0.63 (b) M_=0.80

!

(©)M_=0.95 (d)M_=1.20

Figure 4.8 Effects of Freestream Mach Number on Mach Contours: NACA 0012, o = 1.25°
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(b) 0=1.25°

© a=5.0° (d) a=10.0°

Figure 4.9 Effects of Angle-of-Attack on Mach Contours: NACA 0012, M., = 0.80
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(a) a=0.00° (b) 0=1.25°

() =5.0° (d) a=10.0°

Figure 4.10 Effects of Angle-of-Attack on Mach Contours: NACA 64A006, M, = 0.85

The case for o = 0° has weaker shocks on the upper and lower surface than the NACA 0012
airfoil even with a larger freestream Mach number, due to the airfoil thickness change (Figure 4.10a).
The angle-of-attack is increased to 1.25°; the shock wave strengthens and moves aft on the upper
surface and the lower surface shock is not evident. For @ = 5°, the upper surface shock moves
to the trailing edge and strengthens, resulting in a larger supersonic region above the surface
(Figure 4.10c). The angle-of-attack is increased to 10° and the upper surface shock wave strengthens

further (Figure 4.10d). The supersonic region is larger than seen in Figure 4.10c.

Lift, drag, and moment curves for 0° < a < 5.75° and Mo, = 0.85 are displayed for a range of
a in Figure 4.11. It is interesting to note the nonlinear character of the lift curve for this transonic
Mach number. C; is relatively linear up to approximately 1.25° and then is rather nonlinear for the

rest of the range of a. The drag coefficient has a parabolic nature up to approximately o = 1.5° and
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Figure 4.11 Variation of Angle-of-Attack: NACA 64A006, M., = 0.85

then becomes fairly linear for the remainder of the range of a. The moment curve slope decreases

until approximately o = 2.5° and then increases for the remainder of the range of a.
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V. Airfoils With Structural Coupling

The primary objective of the dissertation research is to develop tools to find the point at
which there is a fluid-structure interaction of a dynamic system. Dynamic fluid-structure interaction
between a wing and surface flow primarily consists of bending and torsional motion of the structure.
A two-dimensional representation of wing bending and torsional motion is captured by a pitch and
plunge airfoil (PAPA). The airfoil pitch motion simulates wing torsion, and airfoil plunge motion
simulates wing bending. The coupled fluid-structure system of the current research consists of a
mating of the Euler equations, discretized with a TVD scheme, and a two-degree-of-freedom pitch
and plunge structural model. This combined system is a nonlinear system of equations, written
as ¥; = G(Y;)) and is termed the PAPA model. A description of the structural model and the

various methods of solving the nonlinear system of equations is presented in this chapter.

Figure 5.1 describes the PAPA model used in the current research. Linear and torsional
springs are attached to a non-deforming airfoil at the elastic axis. The elastic axis is displaced by
some distance from the center-of-gravity, providing coupled pitch and plunge motion. The airfoil
has an unloaded torsional spring angle of ap, which simulates a wing root angle-of-attack. The

pitch and plunge airfoil is placed in the freestream of a compressible fluid with velocity V..

Section 5.1 provides a detailed description of the aerodynamic and structural dynamic govern-
ing equations. Section 5.2 outlines validation of the PAPA model. Section 5.3 provides equilibrium

solutions for a wide range of structural and aerodynamic parameters.

5.1 Fluid-Structure Interaction System

This section provides a description of the structural coupling model. The equations of motion
are presented for a two-degree-of-freedom, pitch and plunge airfoil model. Implementation of the

PAPA model for both equilibrium solutions and time-integration solutions is provided.




Figure 5.1  Airfoil Structural Coupling Model

§.1.1 Pitch and Plunge Structural Model. A schematic of the structural components of
the PAPA model is depicted in Figure 5.1; the governing equations for the structural dynamics
model are [44]

m71+mr&cosa—mrdzsina+D;.iz+Khh:L, (5.1)
mrh + Iy + Dyo + Ko(a — ap) = Mgy + Lrcosa + Drsine, (5.2)

where h is the vertical displacement, m is the airfoil mass per unit span, r is the distance from
the center of gravity (cg) to the elastic axis (ea), I, is the mass moment of inertia about the
elastic axis, Ky and K, are the spring stiffness coefficients, and Dy and D, are the structural
damping coefficients. The term aq defines the unloaded position of the torsional spring and models
a non-zero wing root angle-of-attack (or static pretwist). L is the net applied aerodynamic force

in the vertical direction, while M., is the net applied aerodynamic pitching moment about the

center-of-gravity (cg).
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Nondimensionalization of (5.1)-(5.2) is accomplished through the use of the following scales:
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(5.3)
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where c is the chord, b is the semi-chord and the * superscript implies a nondimensional quantity.
The scalings chosen allow the structural equations to be compatible with the aerodynamic equa-
tions. The time scale more common in the literature is related to the pitch natural frequency, wq.

The pitch and plunge natural frequencies and the radius of gyration are defined by

Kollo, wh=+Kp/m, roq=+/Is/m, (5.4)

€
Q
1l

while the other parameters of the system are the mass ratio,

m

s = Trab?’ (5.5)

and the damping ratios,

(= _Dn__ (o = _ Do (5.6)

2/mKy’ VI Ky

The aerodynamic forces and moments are replaced with the coefficient of lift, C;, the coefficient of

drag, C4, and the moment coefficient, Cy,:

L
Ch = — .
: Peo Vo%b, (5-7)
D
Cqg = — .
! Poo Vozob’ (5 8)
M
Cn = ———. .
2p Vo%bz (5 9)
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Figure 5.2 Inertial Reference Frame

Using scalings and definitions (5.3)-(5.9), and after dropping the * superscript for notational con-

venience, (5.1)-(5.2) in nondimensional form become

2‘ 2
. . 9
b+ S+ 20, (3) (w—") bt (3) (ﬂ) h= -,
2 7] Wa {7 Wa BsT

A 2 C o 1(2)? 4
zah+ 5136+ Ca (5) rad+ g (—) ra(@ = a0) = ==Cne,

u

where second-order terms in « are neglected and

1
Crmea = Cmcg + EmaC,.

(5.10)

(5.11)

(5.12)

Equations (5.10)-(5.11) are solved along with the aerodynamics equations in the PAPA model.

Equations (5.10)-(5.11) are rewritten in a form compatible with a fourth-order Runge-Kutta

solver. Let s; = h and s3 = «, then $; = s and $3 = s4. After substituting these definitions into
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(5.10)-(5.11), the following first-order relationships are obtained:

$1 = 59, (5.13)
. 1, 2\2 fwn\2 2 w 2
So+ Sxabs=— (:) (—h) 51— 2(n (:) (—E> s3 + —C, (5.19)
2 U Wo 7] Wo UsT
43 = 84, (5.15)
.1, 1/2\° 2 4 1/2\?
oS82 + 5?‘234 = —E (E) 1"(2183 — Ca (E) 7'(2184 + pl.,_?l'cmea + -2- (-’l_;) 1’(21,(1'0, (5.16)

where the () denotes differentiation with respect to time. Rewriting (5.13)-(5.16) in matrix form

yields
MS;+ KS =Q, (5.17)
where _ - - -
81 1 0 0 0
3 0 1 0 %ﬁa
S = , M= , (5.18)
83 0 0 1 0
S4 0 =z, O %ri
0 0 -1 0 0
212
oo G o | @) wme(z) o 0
0 0 0 0 -1
2 2
Ot @20 | | 0 1@ LB
(5.19)

Operating on (5.17) with M ~! provides the evolutionary form

St = K(S,U;X), (5.20)
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where

K=M1'QU)-M1KS, (5.21)
and - -
H(rZ-z2) 0 0 0
0 12 0 -1z
M= Tzl__z_ 2'a 27 | (5.22)
2\"a ~ ¥a 0 0 I(r2-2%) 0
0 —Zq 0 1

The term @ is a function of U, since C; and C,,, are functions of U.

5.1.2 Mowving Airfoil Aerodynamics Model. Modification of the equations of motion for
the two-dimensional airfoil follows the time varying metric approach. The airfoil is constrained to
move along the vertical inertial axis and to rotate about an elastic axis. The “O”-grid moves with
the airfoil. Figure 5.2 depicts an inertial reference system with unit basis vectors i andj and an
airfoil fixed coordinate system with unit basis vectors &; and &z. All of the following relationships
are in nondimensional form conforming to the nondimensionalization previously discussed. The
vector ro is a position vector from the inertial reference frame to the elastic axis origin and is
defined

ro = hj, (5.23)

where h is the plunge magnitude. The local position vector ry, — rg is

I — Lo = £81 + §82 = inl + (Yin — h)J, (5.24)

where

8

=Ty —Tea; Y= Yb— Yea- (5-25)
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Herein, the subscript b refers to a point on the body, and the subscript in refers to inertial coordi-

nates. The inertial positions, z;, and y;,, are

ZTin = Fcosa+ gsine, Y, = —Tsina+ Feosa + h. (5.26)

The pitch-rate vector, €, is related to the angle of attack, a, by

Q = Ok = —ak. (5.27)

The inertial velocity of a point on the body in the airfoil fixed reference frame is [44]

Up = Ox (rb - 1‘0) +ro (5.28)

= (—97 - hsina)é; + (QF + hcos )8,

—Q(Yin — A+ (Qain + B)].

The inertial acceleration of a point on the body is [44]

dQ .
ap = ‘E X (rb - I'o) — Qz(l‘b - ro) +ro (529)
= (—Q§—- Q%% — hsina)é; + (0 — Q2§ + hcos a)éz

= —(Qyin — h) + Q22in)i + (Qin — Q2 (vin — ) + B)j.

The inertial grid speed components u, and v, are obtained from a relationship similar to (5.28),

Uy = —QYin — h), vy = Quin + h, (5.30)



where 2;, and y;, are the inertial coordinates of the grid points. The Euler equations for a moving

airfoil become

8U  B8F(U) 8G(U
+ ()Jr @) _

ER o =0 (5.31)
p p(u — ug) p(v —vy)
_ pu _ pu(u—uy)+p _ pu(v —v
U= , F= (=) . G= (v="4) , (5.32)
pY po(u — uy) po(v —vg) +p
E, Ei(u — ug) + pu Ei(v —vg) + pv
F=(F+&G)/7, G=mF+nG)J, (5.33)
U= U/j, T =&y — €y (5.34)

The discrete form of (5.31) for the moving airfoil is equivalent to (3.11)-(3.14):

A “n

3 +1/2 >

n
1, = Y4, i N

- ém_%) , (5.35)

LU = 072 — At <i”":;/32 - ~f_+;/f> , (5.36)
with
UMt = LeL, U (5.37)
Equation (5.37) is valid for
1<i<I, and 2<j<J~1. (5.38)

The definitions of the TVD fluxes 1;3‘ and G are different for a moving airfoil than for a stationary

airfoil and are defined in Appendix A.

The farfield boundary conditions for the moving airfoil are the same as (3.18)-(3.22). Also,
the cut is unchanged, with (3.36) defining a mapping of variables outside the domain to physical

variables inside the domain. The surface boundary conditions are different from the static airfoil



case, since a formula for impermeability on a moving surface must take into account the velocity of
the surface. The normal component of velocity is the only specified condition, all other conditions
are obtained from derivative conditions. The following are the surface boundary conditions similar

to those defined in Subsection 3.5.3 for the static airfoil:

! ap OE,
(A s __ — LI
vy =Uh, F*=0, z2=0, L=, (5.39)

where Uy, is the normal velocity of the surface at the point of interest on the body. The discrete

form of the surface boundary conditions are then
1 ! / i 1
5(%’,1 +i2) =Usn, w1=u9 pit=pi2, Eui=Eiy,. (5.40)

The conditions on velocity in (5.40) can be rewritten as

U’,"l 2Ubn, 0 -1 v',:,g

Following the procedures set forth in Subsection 3.5.3, the normal and tangential velocity can be

written in terms of the airfoil fixed velocity components, u. and v,, as

U cos® sin®

Ue
- . (5.42)
v’ —sin® cos® Ve
Combining (5.41) and (5.42), (5.41) becomes
cos® sin® Uej 1 0 1 0 cos® sin® Uei o
= + ’
—sin® cos® Vel 2U3,, 0 -1 —sin® cos® Vei 2
(5.43)




which can be rewritten as

Uej 1 —sin® t1(0) t2(0) Uei 2
= 2U,,, + , (5.44)
Ves 1 cos©® t2(0) —11(©) Vei o
using the definitions
t1(8) = cos®’ B —sin? B, t2(B) = 2cos Bsin . (5.45)

The velocity components on the surface are now expressed in the airfoil fixed reference system.
To obtain the inertial velocity components, denoted by a subscript in, the following relationship is

used:

U cosy —sina Uin
= . (5.46)
Ve sina cosa Vin

Substituting (5.46) into (5.44), multiplying by the density, and operating on the result with the

inverse of the direction cosine matrix, the variables pu; ; and pv; , are found to be

(pu)i 1 = 2l —cosasin © + sin a cos © (5.47)
(pv)i 1 sin asin © + cos & cos ©
t1(a)t1(0) +t2(a)t2(©)  ta(a)tz(®) — ta(a)t1(O) (pu)i2
t1(@)t2(0) — t2()t1(©)  —t1()t1(©) — t2(a)t2(O) (pv)i,z2

where the boundary condition, p;1 = p; 2, appropriate for the moving mesh formulation, is used
to maintain only (¢, 2) data on the right-hand side. The normal velocity component of the body is

computed from (5.28) and (5.42):

Upp, = (7 + hsin @)sin © + (Qz + hcos @) cos©. (5.48)
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Figure 5.3 Dynamic Airfoil Algorithm Flow Chart

The two remaining conditions are

Pin = pi2, Ei1 = Ey . (5.49)

The surface boundary conditions for a moving airfoil consists of (5.47)-(5.49) and revert to the

previously developed static airfoil model for the special case = h = 0.

5.1.8 PAPA Time-Integration Algorithm. The PAPA time-integration algorithm is a
loose coupling of the aerodynamics model (5.37), ﬁ:f' 1= LfL,,Ij,-’:j, and the pitch and plunge
structural model, S; = K(S,U; X). Figure 5.3 depicts the flow chart of the PAPA time-integration
algorithm. The flowfield solution is advanced forward in time At with first-order temporal accuracy
using (5.37). The coefficients of lift and moment are computed from the new aerodynamic variables
and then are used to advance the structural variables o, &, k, and h in time with a fourth-order
Runge-Kutta algorithm [102]. The grid positions are then updated and the metrics recomputed.

The resulting procedure has a At lag between the flowfield variables and the structural variables.

5.1.4 PAPA Equilibrium Algorithm.  The PAPA equilibrium system is a fully implicit cou-
pling of the aerodynamic equilibrium equations and the structural equilibrium equations. Following

the approach of Section 3.7, the aerodynamic equilibrium equations are

F(U,S;)) =0, (5.50)
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and the equilibrium structural equations are defined by

K(S8,U;}) =0, (5.51)

where K is defined in (5.21). The equilibrium fluid-structure interaction system can be rewritten

in coupled form as

G(Y;)) =0, (5.52)
where
U F
Y = , G= : (5.53)
S K

The total number of equations in (5.52) is

N =4I(J —1)+4. (5.54)

Solutions of (5.52) are calculated by Newton’s method. One Newton iterate is obtained by

solving the linear system

GyAY = -G. (5.55)
The Jacobian matrix Gy is given by
Fy Fgs
Gy = . (5.56)
Ky Ks

Newton iterates are repeated until convergence is obtained (or divergence is established). The
bordered algorithm is used to solve efficiently the linear system, (5.55), and is described in detail

in Appendix C.
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The elements of Gy are obtained through evaluation of finite-difference approximations (Ap-
pendix B). As depicted in (5.56), the Jacobian matrix is partitioned into aerodynamic and struc-
tural blocks of elements. The structure of Fy is discussed in Chapter III for a static airfoil and
maintains the bordered banded form for the moving airfoil generalization. The structure of Fig and

Ky are four columns and four rows respectively, and Kg is a four-by-four matrix.

5.2 PAPA Validation

Three methods are used to validate the PAPA algorithm. Errors associated with integration
of the structural equations are quantified by assuming harmonic motion in @ and k, determining
forcing functions, C; and Cy,, consistent with the structural equations and harmonic motion, and
comparing the assumed harmonic « and h profiles with those profiles obtained through fourth-order
Runge-Kutta integration. The second method of validation is a comparison of time-integration so-
lutions for forced pitch and plunge motion obtained with the current method and an independent
time-integration algorithm. The third method is a comparison of time-integration solutions for
coupled, pitch and plunge motion of the PAPA model obtained with the current method, an inde-

pendent time-integration algorithm, and solutions from the open literature.

Validation of the PAPA time-integration and equilibrium algorithms are presented in this
section. First, the structural equations, independent of the aerodynamic equations, are validated.
Next, the time-integration algorithm for a moving mesh is validated by comparison of forced motion
with an independent method. Also, the PAPA time-integration algorithm is validated against two
independent methods from the open literature. Finally, consistency between the equilibrium and
time-integration algorithm is established. The NACA 64A006 airfoil is used for all cases. Table 5.1

defines specific run parameters and grids for each case.
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Case# | Grid# | =z., To | (h=Ca| ™2 |wh/wa | #s | Mo | a0 2 | Type
38 G646-4 0.5 -0.2 0 0.29 0.2 10 | 0.87 0 1.9 TI
39 G646-4 0.5 -0.2 0.29 0.2 10 | 0.87 0 2.0 TI
40 G646-4 0.5 -0.2 0.29 0.2 10 | 0.87 0 2.1 TI
41 G646-4 0.5 -0.2 0.29 | 0.3434 | 10 | 0.87 0 2.25 TI
42 G646-5 | 0.375 | -0.25 0.25 0.2 125 | 0.8 | 1.25° | 5.0 EQ
43 G646-5 | 0.375 | -0.25 0.25 0.2 125 |1 0.8 | 1.25° | 5.0 TI

el Bl K=l K =] K ==}

Table 5.1 Run Summary: PAPA Validation

5.2.1 Structural Model Validation.  The PAPA structural model is validated for coupled

harmonic motion in o and k. Assumed forms of a(t) and h(t),
a(t) = g + @sin(wat), h(t) = hsin(wpt), (5.57)

are substituted into the left-hand sides of (5.10) and (5.11) to determine consistent forcing functions

Ci(t) and Cp,(2) for the right-hand sides of (5.10) and (5.11). The resulting forcing functions are

2 2
Ci(t) = ’u;ﬂ' [(—w% + (%) (:—h) ) Hsinwht + 2(p (%) (:—h) whiz cos wpt — %’wic‘vsinwat] ,
[+2 o

(5.58)

m o r2 22 2
Cm(t) = ”:1 [—mawﬁh sinwpt + —;— (—wf, + (5) ) G sinwgt + (412 (—1_;> Wa b coswat:| . (5.59)

Integration of (5.20) is performed using the forcing functions of (5.58) and (5.59) held fixed over
each time step, as in the PAPA time-integration algorithm. Histories of o and h are compared with

(5.57) for various time steps to assess numerical integration accuracy.

The chosen parameters for the validation case are

g =1.25° a&=05° we=m h=0.1, w,=0.2m,

Ca=Cn=0.1, a=4, p, =125 =z,=-0.25 r2=0.25,

5-14




0.040

0.035

0.025

(rad)

0.020

0,015

0.010 ! 1 I L 1 1 1 L ) 1
0

Figure 5.4 Structural Model Validation for Harmonic Motion in « and h

At | tmas | |[Aa]]2 | Ac [l L AR [ [
0.1 10 [381x1072[811x10"3[2.89x10-2 [ 4.84x 10~3
0.01 10 [ 1.16x 1072 [ 7.63x10~% [ 9.57 x 10~3 [ 5.08 x 10~¢
0.001 | 10 [3.69x 1073 757%x10~° | 3.04 x 10~3 [ 5.10 x 10~5
0.1 100 | 9.62x 1072 [ 8.11x 1073 [ 7.95x 102 [ 5.10 x 10~3

Table 5.2 Structural Model Integration Error Norms

which represent appropriate values for the current research. Time steps of 0.1, 0.01, and 0.001 are

used to produce time histories for 0 < ¢ < 10.

Figures 5.4a and b are the exact solutions and numerical integrations for the chosen time

steps. Table 5.2 displays maximum error norms and L, error norms defined as follows:

[[Ac|| = [|la — (a0 + @sin(wqt))]], ||AR|| = ||k - hsin(wat)]|. (5.60)

The maximum error observed in the integration of (5.20) over 0 < ¢ < 10, using At = 0.01, is

7.63 x 10~%. This error is much smaller than errors sustained in the discretization and integration

of the fluid-dynamic equations, despite maintaining a time step an order of magnitude larger than

that typical of the PAPA model.
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5.2.2 Forced Oscillation Validation.  The dynamic airfoil algorithm is validated by Bux-
ton [22] through a comparison of forced pitch and forced plunge motion with ENS3DAE [121], a
3-D Beam-Warming, Navier-Stokes/Euler solver. The ENS3DAE solutions are computed assuming
inviscid flow. With ENS3DAE, the PAPA model is modified to treat a rectangular, rigid wing. Grid
G646-1 is used as a cross-sectional two-dimensional plane of the three-dimensional grid, providing
a 100 x 31 x 5 grid. Two-dimensional flow is enforced by placing inviscid planes at the wing tips.
Specific parameters used in the ENS3DAE simulations as well as detailed discussions of ENS3DAE

are included in [22].

A NACA 64A006 airfoil at Mo, = 0.87 is forced to pitch and plunge with the following
profiles:

a(t) = asin(wqt), h(t) = hsin(wpt), (5.61)

where

we =011, &=0.229°, wy =011, h=0.028. (5.62)

Many cycles of data are computed to ensure periodic behavior, storing one cycle of data from each

method for comparison.

The time histories for forced pitch are presented in Figure 5.5 and forced plunge in Figure 5.6.
The peak C; value for the ENS3DAE forced pitch solution is 4.7% lower than the TVDntiAE peak
value, whereas, the peak Cy, value is 14.6% lower than the TVDntiAE solution. The peak C; value
for the ENS3DAE solution in forced plunge is 5.1% lower than the TVDntiAE peak value, whereas,
the peak Cy, value is 14.4% lower than the TVDntiAE solution. There are two possible sources of
error: time-integration and spatial discretization/numerical dissipation model error. The spatial
discretization/numerical dissipation error occurs for both a static airfoil, steady-state solution and
a forced pitch and plunge solution. Time-integration errors only occur for the forced pitch and

plunge solution. Since the identical grid is used (as two-dimensional planes with two-dimensional
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Figure 5.5 NACA 64A006 Forced Pitch Comparison: M., = 0.87

flow verified for the ENS3DAE solution), the component of the difference between the two codes
due to spatial discretization can be attributed to the difference in dissipation models, not grid
resolution. ENS3DAE is a Beam-Warming algorithm with nonlinear second- and fourth-order
dissipation added [121]. TVD schemes have an inherent dissipation from the upwind formulation
and are able to capture shock waves accurately without overshoots, eliminating the need for adding
explicit dissipation. Buxton [22] determined that for the current grid, Mach number, and with
a = 1.25° C) compares within 3% and C,, compares within 9% for a static airfoil calculation. This
implies that time-integration must also play a part in the overall error. ENS3DAE is an Euler-
implicit scheme, which is more dissipative than the TVDntiAE time-integration scheme. Both
sources of error contribute to lower peak C; and C,, values for ENS3DAE than TVDntiAE, as seen
in the forced pitch and plunge solutions. In general, the two methods qualitatively compare well

and quantitatively compare within 5% for C; and 15% for C,,.

The farfield boundary conditions of TVDntiAE are cast in the form f; + uf; = 0 to allow
gradient conditions to be of the same form as the interior equations. To ensure this form does not
adversely effect solution quality over standard second-order extrapolation boundary conditions,

comparison with a solution using second-order extrapolation is made. Both forms of TVDntiAE
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Figure 5.6 NACA 64A006 Forced Plunge Comparison: My, = 0.87

are used to compute a forced pitch solution with the following profile and parameters:

a(t) = asin(wqt), (5.63)

where

we =0.11, & = 0.229°. (5.64)

The resulting amplitude difference is 6.9 x 1073 or a 0.05% difference. The phase error is 0.54

nondimensional time units or 0.4% of the period.

5.2.8 PAPA Time-Integration Algorithm Validation. Validation of the time-accurate
algorithm consists of comparison with solutions reported by Kousen and Bendiksen [73] and with
solutions obtained using ENS3DAE in [22], all for inviscid flow. The following is a list of the

parameters used for all three methods:

Zeg=.5,2a=-2,(,=C( =0, (5.65)

Yh = 3434, 12 = .29, p, = 10, Mo, = 0.87, a, = 0°. (5.66)

o
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The identical structural model and coefficient of pressure, lift, and moment calculations of the
current method are used in the ENS3DAE code to provide a consistent comparison. Specific
numerical method parameters used in the ENS3DAE simulations and the grid are the same as
those used in the previous section. The Kousen and Bendiksen (KB) method is a finite-volume,
moving mesh Euler solver with added dissipation to inhibit odd-even decoupling; their grid is a

“C”-grid with 96 x 16 points [73].

Figure 5.7 presents the Hopf-bifurcation diagram for the three methods. The reduced velocity
associated with the flutter onset point, #*, is found to be 1.90 for the current method (time-
integration), 1.92 for ENS3DAE, and 1.96 for KB, obtained through curve fits of ay¢ for each
method. Thus, the Hopf-point locations predicted by the present method and ENS3DAE differ by
less than one percent, even though the dissipation models and the time-integration schemes are
significantly different. The KB solution shows less than a three-percent difference in the value of
@* even though the grid, dissipation model, and time-integration scheme are very different than
that used in the other two studies. The good comparison between the Hopf-point computed with
the current method and with KB and ENS3DAE give confidence in the ability of the current

time-integration method to compute accurately the value of @*.

Although the flutter onset point computation compares very well, the oscillation amplitude,
arc, for u > @* differs between the three methods. In all but the largest values of @, the TVDntiAE
solutions are the least dissipative. Relatively large differences in azc between the present method
and ENS3DAE arise from noteworthy differences (described in Section 5.2.2) in the dissipation
models and time-integration schemes. However, grid or dissipation-parameter sensitivity studies to
evaluate the accuracy of either method in simulating limit-cycle oscillation (LCO) have not been

conducted.

5.2.4 PAPA Equilibrium and Time-Integration Algorithm Consistency. A test of the

consistency between an equilibrium solution of the PAPA equilibrium algorithm and a steady-state
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solution of the PAPA time-integration algorithm is provided in this section. The NACA 64A006

airfoil grid with 60 x 15 points, G646-7, is used with parameters

Teg = 375, To = —.25, g—" =2, r2 = 25, p, = 125, Moo = 0.8, a, = 1.25°, (5.67)

a

The damping is chosen very large,

Ca=1, =1, (5.68)

to force the time-accurate solution to a steady-state condition in a relatively short time.

A time-accurate simulation for 190 time units is performed. Figure 5.8 depicts the time-
accurate solution with equilibrium values displayed at the end time with boxes. At the end time, the
time-accurate solution and the equilibrium solution differ by less than 0.02% for all four quantities.

Precise agreement is necessary for the solution methods to consistently identify the Hopf-bifurcation

point.
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5.8 NACA 64{A006 PAPA Equilibrium Solution Space

A Hopf-point is an equilibrium solution point which satisfies additional constraints. Thus,
characterizing the equilibrium solution space of a system for a wide range of parameters is impor-
tant. This section presents equilibrium solutions for a NACA 64A006 PAPA model at various static

pretwists, o, and freestream Mach numbers. The G646-2 grid is used for all cases of this section.

First, static pretwist effects are presented for a fixed Mach number, M., = 0.8, and static
pretwists in the range, 0.25° < o < 1.25°. The solution space path for the equilibrium angle-of-
attack as a function of @ is presented for each ag. Next, Mach number effects are presented for
ap = 1.25° and Mach numbers in the range, 0.63 < Mo, < 1.2. As in the static pretwist study,
a set of equilibrium angle-of-attack paths as a function of % are presented for each Mach number.
Solution space paths are efficiently generated by “manual continuation.” Manual continuation is the
process by which a neighboring solution is computed with the current solution as an initial guess.
In this way, the number of Newton iterates necessary to obtain converged solutions is reduced by

approximately 50% for the changes in & chosen for the next solution point.

§5.3.1 Static Pretwist Effects. Equilibrium solutions of the PAPA model are computed
for My, = 0.80 and variations in ag and @. Each curve of Figure 5.9 presents the equilibrium
angle-of-attack, aeq, versus % for a fixed, pretwist angle. For each solution computed, the airfoil
pitches down from the unloaded angle of attack, @ = aq, as a result of the nose down pitching
moment (C, < 0). Also, the amount of pitch down increases with @, since increasing @ effectively
weakens the torsional moment spring. As «g increases, the magnitude of the pitch down increases

for a fixed @ due to the increasingly negative pitching moment.

5.3.2 Mach Number Effects. Equilibrium solutions of the PAPA model are computed
for ap = 1.25° and variations in M, and @. Each curve of Figure 5.10 presents aq versus 4 for

a fixed Mach number. Very little variation in Qg is observed for My, = 0.63. This freestream
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Figure 5.9 Equilibrium Angle-of-Attack: M, = 0.80

Mach number produces subsonic flow throughout the domain for ag = 1.25°. When the flowfield
is completely subsonic, there is less of a negative value of C), and the pitch down is not as severe.
This is due to the relatively small expansion on the upper surface. As @ increases the airfoil pitches
down to a new equilibrium position. The trend of decreasing a., with increasing @ is maintained
for each subsonic Mach number. At a supersonic freestream Mach number of 1.2, with @ fixed, the
equilibrium angle-of-attack is a pitch up from the solution for My, = 0.95. This reversal in trend

is related to the phenomenon called flutter dip observed in transonic flow.
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VI. Hopf-Bifurcation Analysis

One of the main objectives of the current research is to develop a method of computing a
Hopf-point with a workload on the order of a regular point, per iteration. Towards this end, a new
algorithm that is more efficient when applied to a PAPA system than the Hopf-point algorithms

used by previous researchers is developed.

The main algorithm used by other researchers is the Griewank and Reddien (GR) algorithm.
This chapter develops modifications to the GR algorithm to eliminate forming and LU decomposing
a G matrix, a necessary step in the GR algorithm [45]. These modifications reduce the workload
to a regular point calculation with multiple right-hand sides in the solution of the linear system with
LU decomposition, assuming that the LU decomposition requires the majority of computational

work.

First, the Hopf-point system is defined and the structure of the system for the PAPA model
is discussed. Next the GR algorithm, commonly used to solve the Hopf-point system, is described
in detail and deficiencies of the algorithm for the PAPA model are discussed. Finally, an algorithm

which circumvents these deficiencies is defined in detail.

6.1 General Framework for Hopf-Bifurcation Analysis

Once the nonlinear system of equations defining the fluid-structure interaction system is de-
veloped, the Hopf-point equations of Chapter II can be applied to determine the stability transition

point. The system of equations, F = 0, and the associated solution vector, X, to be solved at the
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Hopf point are written as

) G ) i , )
GyP, +©P, Py
F=|gyP,-0P | =0, X=| p|. (6.1)
2 A
qTPy—1 ¢)

The system of equations, F = 0, can be solved with Newton’s method. The Jacobian matrix, Fy,

is found by the author to be

Gy 0 0 Gj 0

(GyP)y Gy ©I (GyP); P,

Fx=| (GyP)y -©I Gy (GyP); -P |- (6.2)
0 ¢ 0 0 0
0 0 47 0 0
The linear system
FLAX = —F" (6.3)

becomes an iterate of Newton’s method for the expanded system of equations. Unfortunately, (6.3)
is a (3N + 2) x (3N + 2) linear system, where N is large and defined by (5.54). This system
is impractical to solve in full form for a 2-D airfoil. Algorithms that compute solutions of (6.1)
for large systems approach the problem by treating Fy as a sparse, blocked system. One such

algorithm is the Griewank and Reddien [45] algorithm, the subject of the next section.
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6.2 Griewank and Reddien Algorithm
The Griewank and Reddien (GR) algorithm solves the linear system (6.3) in block form to

reduce the system to an N x N matrix system.

6.2.1 Development of GR Algorithm.  The block method of solution is derived by exam-

ining the individual equations of (6.3):

GyAY + G;A) = Ny, (6.4)

(GyPi)yAY 4+ Gy AP, + ©IAP; + (Gy P);A) + P,A© = Ny, (6.5)
(Gy P2)yAY — ©IAP; + Gy APy + (Gy P;){AX — PLA® = N3, (6.6)
q¢T AP, = Ny, (6.7)

¢" AP, = N5, (6.8)

where Ni-Nj are the negatives of the components of F in (6.1). It is assumed throughout that Gy

is nonsingular. By defining two vectors, ¥; and 73, such that

71 =Gy'Ny, 12 =GylGy, (6.9)

(6.4) becomes

AY =7 — 1A, (6.10)




Using (6.10), AY can be eliminated from (6.5) and (6.6) to provide

Ml MZ ‘/1 P2 A.Pl ‘/3

-My My Vo -—-P AP, Va
= , (6.11)

¢ 0 0 o0 AX Na

0 ¢ o0 0 AO Ns

where M; = Gy, My = ©I and

Vi = (GyP); — (Gy Py, (6.12)
Va = (Gy Py); — (Gy Pa)y e, (6.13)
Va = N2 — (Gy Py, (6.14)
V:} = N3 — (Gypg)y’)’l. (615)

The system of equations (6.11) is still very large and is not banded. To take advantage of the
internally banded structure of Gy, the process of eliminating variables is continued. First, let
M; = Mle'1 = %Ml, multiply row two of (6.11) by M3, and then add the result to row one of
(6.11). By defining My = My + M3M; = Mo+ %Mlz and operating on the resulting row with M},

an expression for AP, is obtained:

AP; = 75 — 13AX — 1,40, (6.16)

where

v3s = M7'(Vi+ MaVa), va= MY (Py— MsPy), 5= M7 (Vs + M3Vy). (6.17)




With (6.16) substituted into the second row of (6.11), a similar expression for AP, is obtained:

1

AP1:®

[Ml(’rs — 13X — 14AO) + Vol — PLAO — V4| . (6.18)

With representations of AP; and AP; in terms of A) and A©, two equations can be developed

for AX and A©. First, operate on (6.16) with g7 and replace ¢¥ AP; with N5 using the fourth row

of (6.11), to obtain

013X + ¢T72A0 = ¢Ty5 — Ns. (6.19)

Then, operate on (6.18) with ¢7 and replace ¢* APy with Ny using the third row of (6.11), to obtain
(—¢" Myys + " Va)AX + (—¢" Mi7s — qT PL)A® = ¢TV, — ¢T M5 + ©ON,. (6.20)

Equations (6.19) and (6.20) can be solved with Cramers rule to obtain the scalar quantities AX

and A©, which can then be used to determine the other unknowns.

6.2.2 Summary of GR Algorithm. In summary, one iteration of the GR procedure is

1. solve two linear systems Gyy: = Ny and Gyv, = Gy for v; and v»
2. compute V1-V, with equations (6.12)-(6.15)
3. compute matrices Mz and My: Mz = M, My = OI + L M?

4. solve three linear systems, Myys = Vi + M3Va, Myys = Py — M3Pi, and Myys = Va + MsVs,

for v3, 74, and 75

5. solve a system of two equations, (6.19) and (6.20), for the two unknowns AX and A® using

Cramers rule
6. compute AP; and AP, with equations (6.18) and (6.16)

7. compute AY with equation (6.10)




8. update the variables Y, P;, P,, and ©
Tterates are repeated until convergence is obtained (or divergence is established).

In Chapter I, the Beran and Lutton [15] algorithm is described and the GR algorithm limita-
tion of solving a full matrix is presented. Equation (6.11) is also valid for the GR algorithm applied
to the stream-function vorticity form of the equations, but the definition of My is not ©I. The
definition of My for the streamfunction-vorticity form is © L, leading to M3 = %Ll—lMl. Further

manipulations necessary to solve the system produce a square full matrix.

6.2.3 Limitations of GR Algorithm. The GR algorithm is limited by how efficiently
systems of the form Gy = b and Mz = b are solved. If Gy is banded, the matrix My = ©1+ %Gzy
has twice the bandwidth of Gy. The GR algorithm coupled with LU decomposition would then
have an order of work defined by an LU decomposition of Gy and Mj or approximately 1.5 times a
regular point computation. Unfortunately, with the current algorithm, Gy has bordered elements
related to the cut and structural equations that cause Gy to be non-banded. In general, the square
of a bordered matrix is a full matrix. Therefore, My is full and the order of work for the GR
algorithm applied to the PAPA system is that of an LU decomposition of a full N x N system,

O(N?3). For a reasonably fine mesh, the GR algorithm is deemed untenable.

6.8 Blocked Gauss-Seidel Newton Algorithm

An alternative approach for computing Hopf-bifurcation points has been developed by Beran
and Morton [18]. The primary purpose of the alternative approach is to maintain an order-of-
magnitude equivalence, in terms of computational effort per iteration, between the calculation of
Hopf-points and regular points. This method is characterized by, but not identical to, the successive
(under) relaxation method and is termed a Blocked Gauss-Seidel Newton method. The acronym
BGSN5 is used throughout to denote the Blocked Gauss-Seidel Newton algorithm for the five

equation system, (6.1). The under-relaxation parameter is denoted by w.
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To design BGSN5, the expanded system (6.1), is rewritten with a slightly different ordering

as
FRrAX = -F7,
Gy P+ 0P, P,
qTP1 X
F = G =0, X = Y
GYPZ - G)Pl P2
qT.Pz -1 C]
so that the Jacobian matrix, Fy, becomes
Gy (GyPl)j‘ (GyPl)y or
qT 0 0 0
Fx=1 0 Gj Gy 0
—-0I (Gsz);\ (GYPZ)Y Gy
0 0 0 q7
First, system (6.21) is cast as a 2 x 2 blocked system:
D U AX M
L D, AX, No
where i}
Gy (GyP); (GyP)y
Dy = qT 0 0 Dy =
0 Gj Gy
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(6.24)
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-0l (GyP); (GyP)y

I = , U= 0 o |, (6.26)
0 0 0
0 0
F AP
Fa AP,
Nl = — ]-'2 y Ng = - y AXl = AX y AXZ = . (627)
Fs AO
Fs AY

Then, straightforward successive relaxation on the 2 x 2 blocked system (6.24) is accomplished by
reducing the linear operator to a blocked lower triangular matrix with the simplification U = 0.
However, two modifications are made to facilitate the convergence properties of the method, of
which both involve keeping some terms in U. First, P is kept, since this term is only a column
vector, and its inclusion does not affect the speed with which the blocked, nearly lower triangular
matrix is solved. Second, the four diagonal terms in ©1 corresponding to the structural dynamics
equations are kept. These four diagonal terms are necessary for convergence as the main-diagonal

elements of the structural dynamics equations vanish without structural damping.

With these changes, the primary source of computational work per iteration is the LU de-
composition of Gy (the aerodynamics portion) under the assumption that the numerical Jacobian
calculations are negligible. This is approximately the same requirement as that for Newton’s method

as applied to the computation of equilibrium solutions.

6.3.1 BGSN§ Algorithm Implementation.  As in the GR algorithm, the BGSN5 procedure
is implemented in such a way as to primarily consist of solutions to Gy & = b, for multiple right hand

sides. In order to accomplish this, a partitioning of the nonlinear system, G = 0, into aerodynamic
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and structural equations is performed,

F
G= =0, (6.28)
K
resulting in a partitioned Jacobian matrix,
Fy Fs
Gy = . (6.29)
Ky Ks

In each of the vectors of the method, a subscript “a” denotes the portion of the vector pertaining
to the aerodynamic equations and a subscript “b” denotes the portion pertaining to the structural

equations.

The third equation in (6.21) is rewritten to obtain an expression for AY in terms of A} by

operating on the equation with with G;lz

AY =11 — 7128 (6.30)

where

Y11 = G;lNa, Y12 = G;,IGS‘ (631)

The vectors of (6.31) can be computed with a border algorithm (outlined in Appendix C), combined
with LU decomposition of the banded portion of Fyy. For notational convenience, the following

terms are defined:

713 = (Gy Pl)ymii, 74 =(GyPi)ymz, s = (GyPa)ymi, 716 = (GyPa)yma.  (6.32)

The computation of (Gy P1)y and (Gy P2)y is described in Appendix B.



After eliminating AY from (6.21) and partitioning the aerodynamic equations from the struc-

tural equations, the first and fourth equations of (6.21) become
FyAPy, + FsAPib+ (Gy P1)5 ;AN 4 1135 — T14aAX + P2, A© = Ny, (6.33)

KyAPi, + KsAPb + (Gy P1)5, AX + 73, — 114pAX + OAPy, + P, A© = Ny, (6.34)
— OAPy, + (Gy Pa)5 AN+ M5, — 11648 + FyAPy, + FsAP3b— Pi,AO = Ny, (6.35)

—OAP;,, + (Gypz)beS\ + Y155 — 7161,A:\ + Ky APy, + KsAPyb— Py A® = Ny (6.36)

Equations (6.33)-(6.36) are used to obtain relationships for AP, and AP, in terms of A} and

A©. After operating on (6.33) with Fj;', it becomes
AP, + E'APy +71,0) + 72,40 = 73, (6.37)
where
E'=Fy~'Fs, m,= FU_I[(GYpl);a—‘rma], Yoa = Fu™ ' Pas, Y3, = Fu ' [Nig—"134)- (6.38)

By pre-multiplying (6.37) with —Ky and adding the result to (6.34), (6.34) becomes

APy 4 71,A% + OLT APy + 712, A0 = vy, (6.39)

where
Li=Ks—KvE', v,= L7 (GyPr)s, — 1145 — Kumal, (6.40)
125 = LT [Pay — Kumaal, s = L7 [N1p — 113y — Kuvsg)- (6.41)
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Equation (6.39) is now used to eliminate AP;; from (6.37) to obtain

APy, — OE'LT APy + (114 — E'v13)AX + (12, — E'72;)AO = 73, — E'vs,. (6.42)

To eliminate APy, from (6.35), operate on (6.35) with Fj;' and substitute (6.42) into the result:

APy, + F'APyy + 4, AX + 75,00 = 76, (6.43)

where

F'=Fy~'[Fs - ©’F'LT"], 74, = Fu ' [(Gy P2)s, + O714 — OE 11, — Yi64), (6.44)

Vsa = Fu  [—Pia + Ov2, — OFE'133], Y6, = Fy ™ [Nag + ©13, — OF 73, —m15,].  (6.45)

The terms APy, and AP,, can be eliminated from (6.36) by substituting (6.42) into (6.36) and

adding to (6.43), pre-multiplied by —Ky:

APy + 143A% + 75,40 = 75, (6.46)

where
Ly=Ks+O°LT —KuF', y4 = L3 [(Gy P)s; + ©7115 — Y165 — Kuvaa), (6.47)
sy = L3 [—Puy + O72 — Kusal,  Yes = L3 [Nay + O35 — 1155 — Kuveo). (6.48)

The term APy is eliminated from (6.43) by substituting (6.46) into (6.43) to obtain

APy + (Y4 — Fya) AN+ [15, — F'13,]A0 = 76, — Flyey,. (6.49)
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Similarly, (6.46) is substituted into (6.42) to obtain

AP+~ E'v1y+ OF LT a3 ) AN+ [124 — E' 12 + O E' LT v5,] A0 = 73, — E'v33+ O E' LT e,
(6.50)

Finally, by eliminating A Py, from (6.39) in the same manner, (6.39) becomes

APy + [115 — OLT 743 ]AX + [y2, — OLT 1y5;,]AO = v3b — OLT ;. (6.51)

Relationships (6.46)-(6.51) are four equations for AP, 4, APy, APy, and APy, in terms of A)
and A®. Using the other two relationships of (6.21), ¢ AP, = N and ¢T AP, = Ns, two equations
for the two unknowns AX and A© can be obtained. Summing (6.50) and (6.51), operating on the

result with ¢7 and substituting ¢T AP, = N, into the result produces

E11AX + €120 =1y, (6.52)
where
éi1=q; [11a— E'my + OFE LT 4]+ a3 [115 — OLT M 1a), (6.53)
€12 = @ [Y20 — E'v25 + OF LT 53] + 0 [v2, — OLT 54, (6.54)
M =g [0 — E'y3, + OF LT 6] + 3 35 — eL1—176b] — Na. (6.55)

Similarly, summing (6.46) and (6.49), operating on the result with ¢7 and substituting ¢T AP, = Nj

into the result produces

E21AX+ €220 = 1, (6.56)

where

€01 = qp [Yaa — F'vap) + ¢F 7ap, (6.57)
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€22 = q2 (Y50 — F'v33) + ¢F Y50, (6.58)

N2 = a3 [Ysa — F'¥63] + 4 Y65 — Ns. (6.59)

The two equation system, (6.52) and (6.56), with two unknowns, A) and AO, is solved with

Cramers rule:

is

m &2 i m

. N2 &a2 a1 M
AA=7—n——+ ABO=7+—-—L, (6.60)

11 &2 11 &2

&1 a2 €1 &22

6.3.2 BGSNS§ Algorithm Summary.  In summary, one iteration of the BGSN5 procedure

. solve the bordered linear systems Gyvy11 = N3 and Gy712 = G5 with LU decomposition and

the bordering algorithm

. compute (Gy P1)y and (Gy P2)y and then form v13, Y14, 715, and 716 with (6.32)

. compute E’, v1,, ¥2,, and v3, using the LU decomposed form of Fyy found in step 1 with

(6.38)

. invert the 4 x 4 matrix L; and compute 713, 723, and 73, using (6.40) and (6.41)

. compute F’, v4,, ¥5,, and s, using the LU decomposed form of Fyy found in step 1 with

(6.44) and (6.45)

. invert the 4 X 4 matrix Ly and compute 74, 9s;, and 76, using (6.47) and (6.48)
. compute the corrections AX and A® with (6.60)
. compute the corrections AP; and AP, with (6.46), (6.49), (6.50) and (6.51)

. compute the correction AY with (6.30)
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10. update the variables Y, Py, Ps, 5\, and © with

Yt = YY+wAy, (6.61)
P/t = P! t+wAP;, (6.62)
Pt = P!+ wAP, (6.63)
W = X pwAld, (6.64)
e'tl = o’ +wAo. (6.65)

BGSNG5 iterates are repeated until convergence is obtained (or divergence is established).

6.3.8 BGSN4 Algorithm Summary. A Hopf-point computation for a symmetric airfoil
has a special feature when ay = 0 and % is the free parameter. Since the aerodynamic equations
are independent of @, G5 = Gy is nonzero only if Ky is nonzero. When the initial conditions for h
and « are h = @ = 0, K = 0 for any @ and thus Kz = 0. Therefore, if a solution to G = 0 is found
for a single value of @, G = 0 for any different value of 4. This implies that G = 0 is decoupled
from the other four equations of (6.21). This decoupling allows the system to be computed more
efficiently by eliminating the third row and third column from the Newton iterate, (6.21). The
iterative method previously described is used with the modification of eliminating the third row in
D and U , and the third column in D; and L. This modified method is termed the four-equation

Hopf-point algorithm (BGSN4).

The procedure for one BGSN4 iterate is summarized as

1. solve the regular point problem, G(Y; :\) = 0, with Newton’s method for Y

2. solve the linear systems,

FUEI:FSa FU‘Yla:(GYpl)Xa’ FU72a =P2aa FU734:N1a) (666)
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with LU decomposition for E’, v1,, 724, and 73,

3. invert the 4 x 4 matrix L; = Kg — Ky E' and compute 713, v2;, and s, using

vy = LTH(Gy P)sy —Kumial, v2s = LT [Pas—Kuvzals 85 = LT [N1y — Kuvs,] (6.67)

4. solve the linear systems,

FUF' = Fg — GZE'Ll_l, Fu‘Y4a = (GYPz)j‘aﬂ' e')’la - eEl'Ylb: (6'68)

Fyvs, = —Pis +©72, — OF'y3;, Fyve, = Nag + O3, — OF 73, (6.69)

with LU backsolves for F', v4,, v5,, and vs,

5. invert the 4 x 4 matrix Ly = Kg + @le_l — Ky F' and compute 74, 753, and 7, using

vap = L3 [(Gy P2)3, + ©715 — Kuvaal, 758 = L3 = Pupy + ©723 — Ku sl (6.70)

vsp = Ly '[Nay + ©73; — Kus,) (6.71)

6. compute the corrections, AX and A®, with (6.60)
7. compute the corrections, AP; and AP,, with (6.46)-(6.51)

8. update the variables P;, P, 5\, and © with

P/l = P’ iwAP, (6.72)
Pt = P4 wAP, (6.73)
= 3 L wAl, (6.74)
e'tl = o'+wAe. (6.75)
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BGSN4 iterates are repeated until convergence is obtained (or divergence is established).

BGSN4 is different from BGSN5 in terms of workload in two ways. The first is the elimination
of one LU backsolve, which is relatively trivial. The second difference is the elimination of (Gy P;)y
and (Gy P)y from the method. Since they are computed numerically and involve many more
computations than Gy (see Appendix B), the workload is reduced from the BGSN5 method. The
amount of workload reduction in terms of CPU time is a topic of discussion in Chapter VII in

addition to an evaluation of performance relative to computations of equilibrium solutions.




VII. PAPA Results

Hopf-bifurcation analysis is applied to a NACA 64A006 PAPA model for various grids, aero-
dynamic parameters, and structural parameters. Validation of the Hopf algorithm is performed by

comparison with two other methods and through a limited grid sensitivity study.

Hopf-points are computed for systematic changes in Mach number, pitch and plunge damping,
and static pretwist to produce flutter boundaries with respect to these variables. The resulting
flutter boundaries are validated with time-integration. Cases for which ap = 0° are computed with

the BGSN4 algorithm and the static pretwist boundary is computed with the BGSN5 algorithm.

7.1 Hopf-Bifurcation Validation

The Hopf-bifurcation algorithm is validated in three ways. First, the eigenvalues of Gy
are computed at various reduced velocities to determine the stability transition point (denoted
eigenvalue transition point). The Hopf-point, computed with TVDntiAE, is compared with the
eigenvalue transition point to demonstrate consistency. Next, time-integration solutions are com-
puted for the same reduced velocities as the eigenvalue solutions, demonstrating either damped
oscillatory, or stable limit-cycle solutions. These time-integration solutions document consistency
with the Hopf-point solution and the eigenvalue solutions. Finally, grid resolution effects on the

Hopf-point are analyzed for a small number of grids.

The Hopf-point is computed with the BGSN4 algorithm. An equilibrium solution is computed
for the PAPA system at an initial reduced velocity to be used as the initial condition for the
aerodynamic and structural variables. The eigenvector components, P; and P, are initialized with

the relationship

=P = m (7.1)



Case# Grzd# Leg Lo Ch =Ca Ta wh/wa Hs My | ao u Type
44 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 6.5 | BGSN4
45 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 |1 0.85 | 0° | 6.5 Eig
46 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 7.0 Eig
47 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 7.5 Eig
48 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 {1 0.85 | 09 | 8.0 Eig
49 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 1251 0.85 | 0° | 8.5 Eig
50 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 1251 0.85 | 0° | 6.5 TI
51 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 1 0.85 | 0° | 7.0 TI
52 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 085} 0° | 7.5 TI
b3 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 8.0 TI
54 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 [ 0.85 | 0° | 8.5 TI

Table 7.1 Run Summary: Hopf-Point Validation (Eig-eigenvalue calculation, TI-time-integration,
BGSN4-Hopf-point with BGSN4 algorithm, BGSN5-Hopf-point with BGSN5
algorithm)

The normalization vector, ¢, is formed by the relationship

P,

=2 7.2
4= BT, (7.2)

which satisfies the second normalization condition ¢7 P, = 1. The imaginary component of the
eigenvalue, ©, is initialized to 0.1 and the under-relaxation parameter is set to 0.1. The solutions
are considered converged when the maximum of the Ly residual norms of F; — Fy is less than 1075,
With the above initial conditions and convergence criterion, the Hopf-point solution is computed
in 95 iterations. The resulting critical reduced velocity, @*, is 7.050 and the imaginary component

of the critical eigenvalue pair, ©*, is -0.1079.

Table 7.1 lists the cases for this section. The following is a list of the aerodynamic and

structural parameters used for all runs:

Zeg =375, 2o = —.25, (p = (o = 0.1, (7.3)

Zho— 9, 12 = 25, py =125, Mo = 0.85, a, = 0°. (7.4)

Wo
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7.1.1 PAPA Figenvalue Analysis. A demonstration of the method to compute the stability
transition point with eigenvalue analysis is described in this section. The eigenvalue stability point
is computed by a linear interpolation of the two eigenvalue solutions bracketing the imaginary axis.
Finally, the Hopf-point computed with the BGSN4 algorithm is compared with the eigenvalue

transition point.

Computing the stability transition point with eigenvalue analysis is based on the analysis of
Chapter II. Time-accurate solutions close to the stability transition point can be expressed as (2.5).
The time-coefficient of the exponential term determines system stability and can be computed by
(2.12). Eigenvalues of Gy, evaluated at an equilibrium point, are computed with a suite of sub-
routines from Numerical Recipes [102]: HQR, ELMHES, and BALANC. Eigenvalue negative real
parts contribute damped modes, whereas, eigenvalues with positive real parts contribute unstable
modes, which typically develop into stable limit-cycles. The eigenvalue with the largest real part
is used to determine system stability. Through a variation in the reduced velocity, the stability

transition point is bracketed.

Table 7.2 summarizes the eigenvalue computations for five reduced velocities obtained with
cases 21-25. For cases with @ < 7.0, all eigenvalues have negative real parts and the eigenvalue with
the largest real part is listed in Table 7.2. The @ = 7.5 and greater values in the table all have a
pair of eigenvalues with positive real parts. The eigenvalue pair migration from stable to unstable
as a function of % is presented in Figure 7.1a. It is evident that when @ = 7.0 the eigenvalue pair

with largest real part is close to the imaginary axis, contributing to a very lightly damped system.

Using linear interpolation, the reduced velocity at the Hopf-point can be estimated at @ =
7.049 with an imaginary part © = £0.10788. The BGSN4 solution has a percent difference of
0.01% for @* and 0.02% for ©*. The excellent agreement between the two methods demonstrates

consistency between the eigenvalue analysis and the Hopf-point algorithm.




7 Real Imaginary
6.5 | -4.0202E-03 | +0.11054
7.0 | -3.7365E-04 | £0.10811
7.5 | 3.3927E-03 | +0.10575
8.0 | 7.1845E-03 | +0.10335
8.5 | 1.0908E-02 | +0.10084

Table 7.2 Eigenvalue with Maximum Real Part for Various Reduced Velocities

7.1.2 PAPA Time-Integration Analysis.  Time-integration is used to verify the oscillatory
behavior of the solutions of Table 7.2. Time-accurate histories of «, h, Cj, and C,, are computed.
A non-equilibrium solution (a = 0.2°, h = 0) is used as the initial condition for all but the solution
for & = 7. The airfoil is released from the initial conditions allowing pitch and plunge freedom.
Since o = 0.2° is not a stable equilibrium solution for ag = 0?, the airfoil oscillates. Due to the very
light damping at @ = 7, this case is initialized with a = 0?, providing an infinitesimal perturbation

in the form of truncation error.

The maximum and minimum amplitude of the angle-of-attack, arc, is recorded after a suf-
ficient number of cycles are computed to capture the stable, oscillatory behavior (or steady-state
angle-of-attack). Figure 7.1b depicts the arc versus @ behavior (or Hopf curve). Solutions with
% < 7 are damped oscillatory solutions with aeq = 0. Solutions with % > 7.5 are stable limit-cycles,

for which o ¢ increases with .

The imaginary component of the eigenvalue is an approximation of the period of oscillation.
Since the eigenvalue approach only considers one frequency of oscillation in the linearization, one
would expect the difference between the actual period and the period obtained with the critical
eigenvalue to grow as @ is increased past #*. Table 7.3 summarizes a comparison of periods obtained
from eigenvalue analysis and time-integration. Both methods compute an increasing period as @

increases. As expected, the percent difference between the approximated and actual periods grows

as @ increases. The period approximated with the Hopf-point is Ty = O‘f(,)r79 = 58.23, which

is consistent with the time-integration and eigenvalue analysis periods. The agreement in trend
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Figure 7.1 Eigenvalue Migration and Associated Hopf Curve: % = 6.5 — 8.5

u TEIG TTI % Diff
7.5 | 59.42 | 56.75 | 4.7%
8.0 | 60.80 | 57.20 | 6.3%
8.5 ]6231 |57.33 | 8.7%

Table 7.3  Period of Oscillation Comparison for Various Reduced Velocities (T = 58.23 at 4* =
6.937

of period and oscillatory amplitude demonstrates complete consistency between the eigenvalue

analysis, time-integration solutions, and Hopf analysis.

7.1.3 Hopf-Bifurcation Point Sensitivity to Grid Resolution.  The Hopf-bifurcation anal-
ysis of this work is based on a linearization of a discrete nonlinear system. The linearization in-
corporates an equilibrium solution and equilibrium system eigenvalues. Since equilibrium solutions
and eigenvalues of discrete systems are functions of spatial discretization, it is reasonable to assume
that the Hopf-point obtained with the current method is also a function of spatial discretization.
This section discusses the trend in Hopf-point solutions for variations in four grid parameters, I, J,
Awall, and R,4,. These four parameters are examined in detail in Subsection 4.1.1 to determine
their effect on static airfoil solutions. In this section, variations in these four parameters is analyzed
to determine their effect on the Hopf-bifurcation point. A limited number of Hopf-point solutions

are compared,due to resource limitations, and trends for the critical parameters are documented.



Case#t | Grid# | I | J | Awall | Rppoe | @* o* % Diff u* | % Diff ©*
55 G646-9 | 60 | 13 | 0.005 4.1 6.434 | -0.1194 —7.3% 8.8%
56 G646-7 | 60 | 15 | 0.005 8.0 7.050 | -0.1079 1.6% -1.6%
57 G646-8 | 60 | 15 | 0.005 10.0 | 7.588 | -0.1048 9.4% -4.5%
58 G646-6 [ 60 | 15 | 0.015 8.0 7.720 | -0.1055 11.3% -3.8%
59 G646-5 | 100 | 15 | 0.005 10.0 | 6.674 | -0.1123 —3.8% 2.4%
60 G646-3 | 100 | 15 | 0.015 | 10.0 | 6.937 | -0.1097 | Baseline Baseline

Table 7.4 Run Summary: Grid Sensitivity

Table 7.4 summarizes the cases run for the grid study. Case 60 is used as the baseline
in comparing #@* and is used for the majority of results presented in later sections. The largest
percent difference is 11% and encompasses variations in Rpae, I, and resolution normal to the

surface.

The number of nodes defining the airfoil shape, I, is increased from 60 to 100 in Cases 58
and 59. The other grid parameters, J, Awall, and R,,4; are held fixed. An increase of 66% in I

results in a decrease in #* of 12% and an increase in ©* of 7%.

The wall spacing, Awall, is decreased from 0.015 to 0.005 in Cases 59 and 60. All other
grid parameters are held fixed. The 66% decrease in Awall results in a 4% decrease in @* and an

increase in ©* of 2%.

The domain size is increased independently of the normal resolution in Cases 55 and 56. This
is accomplished by holding I and Awall fixed and increasing both R,,.; and J. An increase in
Rpnax of 100% results in an increase in 4* of 10% and a decrease in ©* of 10%. In Cases 56 and
57, Rmaz is increased while holding the number of nodes normal to the surface fixed. The 20%
increase in Ry,q, results in a 7.6% increase in @*, implying that a decreased normal resolution also
increases u*. The 20% increase in R,,q; and reduced normal resolution results in a 3% decrease
in ©*. It is unclear whether normal resolution increases or decreases ©* from the combined effect

since the change is not very dramatic.
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Figure 7.2 Hopf-Points for Various Grids

In summary, improving all grid parameters does not result in a consistent change in @*,
as seen in Figure 7.2. Increasing the resolution around the airfoil, I, decreases @* and increases
©*. Reducing Awall decreases @* and increases ©*. Refining the grid normal to the body (i.e.,
increasing J), results in decreasing #*. Increasing the domain size, Rpqe, results in increasing @*
and decreasing ©*. The largest difference in #* from the baseline configuration is 11% and 8.8% for
©*. Grid improvement has mixed effects on both @* and ©*, as opposed to the static grid sensitivity
study, which shows a consistent change in Cj as all four parameters are improved. Although this
study is limited in scope due to resource limitations, it does provide trend information and gives

evidence that the position of the Hopf-point is relatively insensitive to grid selection.

7.2 BGSN4/BGSN5 Convergence Properties

The new algorithms, BGSN4 and BGSN5, are a mixture of standard Newton’s method and a.
blocked Gauss-Seidel, under-relaxation method. Since this hybrid method is new, it is important to
document the convergence properties. This section compares the BGSN4 and BGSN5 algorithms

to Newton’s method, the computationally expensive alternative which is the foundation of the
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Figure 7.3 Convergence Histories for Newton’s Method and Various Approximations to Newton’s
Method

current algorithms. Solutions for the various algorithms are computed by Beran and Morton [18]

and included to describe algorithm performance.

A very coarse 30 x 9 grid is used to allow a full Newton’s method solution of the (3N +
2) X (3N + 2) linear system. All solutions of this section are initialized with & = 15, © = 0.08,
and P; and P, are initialized with (7.1). This approach defines the “theoretical best” convergence
for the PAPA model at transonic Mach number conditions. The linear system (6.3) is modified
to eliminate the decoupled equation, G = 0, from (6.1) since g = 0°. A full matrix solver with
partial pivoting is used to compute the solution. Figure 7.3a depicts the convergence history for

this case. The solution converges in 5 iterations with behavior similar to the equilibrium solutions

of Section 4.2.

Applying the BGSN4 modifications of U in Section 6.3 to the full matrix, a solution is
computed with w = 1.0. This allows an assessment of zeroing the terms of U without the added
complexity of the block manipulations implemented for efficiency. The convergence history is shown
in Figure 7.3a with BGSN4* denoting the full matrix implementation. The qualitative behavior is
the same as the Newton’s method solution with an increase of only one iteration for the BGSN4*

solution.




It is necessary to use under-relaxation parameter values less than one for grids with larger
domain sizes and finer resolutions. To assess the impact of w on convergence, values of 0.5 and 0.1
are used to compute solutions. As seen in Figure 7.3a, the character of the w = 0.5 curve is smooth
and very linear. The slight “hump” observed at iteration 4 in the other two curves is non-existent
in the w = 0.5 curve and the solution converges in 39 iterations. The w = 0.1 solution has the
same linear behavior but takes 252 iterations to converge. The convergence history is not included

in Figure 7.3a to maintain a reasonable scale on the abscissa.

The blocked-Gauss-Seidel-Newton algorithms for four and five equations are used to compute
a Hopf-point solution with w = 1. The efficient blocked form of BGSN4 is used to compute a
solution for direct comparison with BGSN5 (Figure 7.3b). There is a slight shifting at the third
iteration in the BGSN4* solution of Figure 7.3a as compared to the BGSN4 solution of Figure 7.3b.
The BGSN5 algorithm adds the complexity of an approximate (Gy P)y derivative on the left-hand
side of the linear system. As is discussed in Appendix B, (GyP)y is evaluated using a first-
order-accurate, finite difference formulation, contributing to a greater degree of approximation for
the Jacobian matrix of (6.3). Due to this approximated Jacobian matrix, the Newton’s method
implementation of (6.3) is limited to a certain level of accuracy as observed in Figure 7.3b. The
first four iterations are identical for the two methods. Iterations 5-10 of the BGSN5 solution are
practically unchanged in residual and solution. The BGSN4 solution continues to converge until
a normalized residual of 10712, approximately four orders of magnitude of improvement. The

solution, as measured by #*, is unchanged (15.0234) for both algorithms after the fourth iteration.

'The numerical Jacobian parameter, €;q., is an important parameter in assessing convergence
and accuracy of the algorithms. This is true since Gy, a numerically computed derivative, is on
both the right-hand-side and the left-hand-side of the linear system. The same value of €jac 1S
used to compute both Gy and (Gy P)y. Figure 7.4a displays the convergence histories for BGSN5

solutions with five different numerical Jacobian parameters. The associated @* is displayed in
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Figure 7.4 Convergence Histories for BGSN5 and BGSN4

Figure 7.4b. The larger the value of ¢;4., the lower the normalized residual, likely due to round-
off error in the calculation of (Gy P)y. Unfortunately, since Gy is part of the nonlinear system
of equations, the accuracy to which it is computed impacts not only the convergence rate but
also the solution, as seen in Figure 7.4b. As the value of €4 is decreased, @* converges to its
asymptotic value. Solutions with €;4. < 1076 are virtually indistinguishable. This suggests either
compromising between convergence and accuracy with the chosen €j4c (€jac = 103 or 10‘6), or
using a different €jq. for Gy and (Gy P)y. The former is chosen for simplicity of coding. The
difference between @* for €jac = 1075 and €jo. = 107° is 0.0652 or 0.43%. Since €jzc = 1075
produces the best equilibrium solution behavior with only a slight degradation of the Hopf-point,

it is chosen for the remainder of the results.

7.3 Hopf-Point Results

The Hopf-point algorithms, BGSN4 and BGSN5, are used to compute solutions for a variety
of aerodynamic and structural parameters. A baseline grid is chosen and held fixed for all of the
solutions of this section. First, a single Hopf-point is computed for a baseline set of parameters.

Time-integration solutions are computed in the neighborhood of the Hopf-point to analyze the
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Casedt | Grid# | (= (o My g w Type Method
61 G646-3 0.5 0.85 0 0.1 Point BGSN4
62 G646-3 0.5 0.7-0.852 0 0.5 | Boundary | BGSN4
63 G646-3 0 0.7-0.854 0 0.5 | Boundary | BGSN4
64 G646-3 | 0-0.5 0.85 0 0.5 | Boundary | BGSN4
65 G646-3 0.5 0.85 0°-1.25° | 0.5 | Boundary | BGSN4

Table 7.5 Run Summary: Hopf-Point Results

solution space. Next, the baseline solution is used to compute flutter boundaries for variations in

aerodynamic and structural parameters.

A flutter boundary is modeled as a collection of Hopf-bifurcation points for different values
of various parameters. Three flutter boundaries are computed. The Mach number and pitch and
plunge damping flutter boundaries are computed with the BGSN4 algorithm (¢ = 0°), whereas
the static pretwist flutter boundary is computed with the BGSN5 algorithm. Typically, flutter
boundary calculations are made with larger values of w since a converged previous solution is used

as the initial guess.

Table 7.5 is a summary of the runs in this section. The baseline grid chosen is a 100 x 15 grid

with Awall = 0.015 and R,,,; = 10. The baseline parameter set is as follows:

Teg = .375, £y = —.25, (p = (o = 0.5, (7.5)

:’—" =2, r2 =925 p, =125, M = 0.85, ap = 0°. (7.6)
o

The solution is initialized as described in Section 7.1. The Hopf-point is found to be located at
u#* = 10.2838 with ©* = —0.1029. Initializing @ to 8, the Hopf-point is obtained after approximately
100 iterations with w set to 0.1. Small w values are necessary for this Mach number when initializing

P; and P, as previously described.

A time-accurate simulation of the PAPA model is performed to validate the stability properties

determined by the Hopf-point algorithm. The time-accurate solution is obtained by computing an
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equilibrium solution at an angle-of-attack typically 0.1° away from the equilibrium angle-of-attack
and then releasing both the pitch and plunge axes. Figure 7.5a depicts the PAPA simulation
for 4 = 9. The oscillations strongly decay in the 450 time units of data presented. Figure 7.5b
depicts the PAPA simulation for @ = 10.29, just beyond the projected Hopf-point. The oscillations
are nearly neutrally stable with apc = 40.0114°. The time histories for 4 = 11 and @ = 14
are presented in Figure 7.6. The oscillations grow in amplitude until a maximum amplitude of
approximately apc = +0.2234° for & = 11 and apc = £1.26° for @ = 14. When @ = 11, the
solution takes approximately 2000 time units to set up a stable LCO. Another method of showing
the good comparison with time-integration is Figure 7.7, which displays the relationship between

the computed Hopf-point and the time-integration solutions.

Near the Hopf-point, the period of oscillation can be estimated by the relationship Ty =
2z [115]. For the Hopf-point at @* = 10.2838, ©* = 0.1029 giving an estimated period Ty = 61.1.
The period of oscillation in Figure 7.5b, obtained through time-integration, is 60.8, providing

excellent agreement with the estimated period.

The resources required to compute a Hopf-point, a regular point, and a representative time-
integration solution for two grids are shown in Table 7.6. A factor of four increase in memory is
observed for a factor of two increase in the number of nodes normal to the surface. The BGSN4
solution requires a 30% increase in computational time per iteration over a regular point for the
100 x 15 grid. BGSN5, on the other hand, requires a 650% increase in computational time per
iteration over a regular point for the 100 x 15 grid and a 560% increase for the 100 x 31 grid.
The total number of iterations for BGSN4 and BGSN5 to converge varies as a function of w, but
for w = 0.5, a BGSN4 Hopf-point is equivalent to computing approximately four or five regular
points and BGSN5 is equivalent to computing approximately 26 regular points for either grid.
The six to seven fold increase in workload between BGSN4 and BGSN5 Hopf-points is due to

the computations of (Gy Pi)y and (GyP2)y as determined by profiling the two computer codes.
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Solution Type | Grid Size | RAM CPU CPU Iterations
(IxJ) | (Mb) | (hrs/10 Its) | (hrs/Converge) | to Converge
Regular Pt 100 x 15 33 0.51 0.51 10
BGSN4 100 x 15 47 0.66 1.93 34
BGSN5 100 x 15 67 3.84 13.2 35
Regular Pt 100 x 31 | 117 3.53 3.53 10
BGSN4 100 x 31 | 170 3.99 16.1 40*
BGSN5 100 x 31 | 232 23.2 93.7 40*
Representative Time-Integration Solution
Solution Type Grid Size RAM CPU
(IxJ) (Mb) (hrs/108 Its)
Time-Integration 100 x 15 1.6 167.5
Time-Integration 100 x 31 2.9 509.5

Table 7.6 Computational Resource Requirements (DEC 4620/Alpha 150 Mhz Workstation).
Note: * denotes estimated.

Profiling is a FORTRAN method of determining how much CPU time is spent in each subroutine
of the computer code. Appendix D provides a detailed description of the profiles for the solutions

computed with BGSN5 and BGSN4.

Also included in Table 7.6 are run times for the time-integration algorithm. The 100 x 15
and 100 x 31 grids are used to compute dynamic solutions for 108 time steps. These solutions are
intended to be references for performance comparison. The number of time steps chosen, although
large, takes into account the number of cycles necessary to compute stable LCO solutions near
Hopf-points. Table 7.6 displays the striking difference in run times between BGSNb5 solutions and

time-integration solutions.

Opportunities exist for improved relative performance through more efficient programming
of the computational procedure for G. The efficiency can be gained by restructuring the data
arrays to take advantage of the machines used to compute the current research solutions. Also, the
overhead involved in computing the aerodynamic stability limit for optimal global time stepping
in the time-integration algorithm is costly and can be avoided by using a constant time-step. This
change of the computational procedure benefits not only the time-integration algorithm but also the

equilibrium solver, due to the close coupling between the two methods. These two improvements
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also impact the time-integration scheme, the function evaluation of the equilibrium method, and

the numerically computed Jacobian of the equilibrium and Hopf-point algorithms.

The Mach flutter boundary is an important boundary to

3.1 Mach Flutter Boundary.

7.

compute since it is of interest to aircraft designers. The transonic flutter dip, which is a function

of airfoil shape, mass distribution, structural stiffness, and structural damping, is a limiting factor

in an aircraft operational envelope. For this reason, the Mach flutter boundary of the PAPA model

is computed for two pitch and plunge damping values.
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Figure 7.8 depicts the Mach flutter boundary for the baseline parameter set computed with
BGSN4. Figure 7.8a presents the critical reduced velocity and Figure 7.8b presents the critical
eigenvalue versus Mach number. The Hopf-point at M., = 0.85, previously described, is used as
the initial approximation for the solution at M., = 0.84. Each additional Mach number on the
flutter boundary is computed starting from the previous solution, including P; and Ps, until the
entire boundary is computed. Every additional solution point requires approximately 20 iterations
for w = 0.5, a factor of five reduction over the solution at M., = 0.85. The complete Mach flutter
boundary, comprised of 18 Hopf-points, is computed in just over 24 hours of CPU time on a DEC

4620/Alpha 150 Mhz workstation.

Time-accurate solutions near the Mach flutter boundary are computed to verify the stability
boundary. Figures 7.5a and 7.6a bracket the boundary for a constant Mach number as discussed
previously. Figure 7.8 provides insight into the behavior of the time-integration solution at @ = 11
and My = 0.85. Since the flutter boundary has a rapid rise near My, = 0.85, the time-integration
solution for & = 11 is very close to the stability boundary and therefore is very lightly damped. The
light damping contributes to the large number of oscillations necessary for a stable LCO. To verify

the flutter boundary near the rapid rise, two time-integration solutions are computed for # = 11
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Figure 7.8 Mach Flutter Boundary: ap = 0°

and Mo, = 0.845 and 0.855 (Figure 7.9). Although the Mach number variation is slight, a dramatic
change in the character of the time-integration solutions is observed. The lower Mach number
solution rapidly sets up on a stable limit-cycle, whereas the higher Mach number solution rapidly
decays to a steady-state. This behavior is not intuitive unless the flutter boundary of Figure 7.8
is available. This highlights the usefulness of methods that compute Hopf-points directly, like the

current method.

One could speculate that the sudden rise in #* at Mach numbers near 0.85 is due to a
switch in the critical eigenvalue pair, causing a dramatic difference in the character of solutions.
To substantiate this speculation, additional points are computed near My, = 0.85. Figure 7.8b
depicts the change in critical eigenvalue, ®*, as Mach number is varied. Between M., = 0.848
and Mo, = 0.849 a sharp change in ©* is observed. This behavior is likely due to a single pair of
eigenvalues being critical for 0.75 < M., < 0.848 and another pair critical for M., > 0.849. The
flutter boundary varies smoothly after My, = 0.849 until the method is no longer able to converge
(due to the lack of a sophisticated continuation method). It should be noted that to compute a

curve similar to Figure 7.8b with time-integration is computationally demanding. This is due to
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Figure 7.9 Time-Integration: ag = 0° and {, = {; = 0.5

the very large number of cycles required to obtain a frequency of oscillation which is not influenced

by transients near a Hopf boundary.

Mach contours for one period of limit-cycle oscillation corresponding to Figure 7.6b are pro-
vided in Figure 7.10. Figure 7.11 depicts the angle-of-attack variation as a function of time and
notes the location in the time-history of each solution depicted in the Mach contours. For this large
% case, a lag in the shock wave motion is evident. Figure 7.10a displays the solution as the airfoil
pitches up through « = 0°. A strong shock is evident on the lower surface and a weak shock is seen
on the upper surface. The Mach contours for & = 1.26° show an even stronger shock now on the
upper surface and no shock is in evidence on the lower surface (Figure 7.10b). As the airfoil pitches
down through o = 0°, the shock waves are a reflection about the chord line of the Figure 7.10a
solution; the strong shock is on the upper surface and the weak shock is on the lower surface. As
the airfoil reaches the minimum o (Figure 7.10d), the contours are a reflection about the chord line

of the Figure 7.10b solution; the strong shock is on the lower surface and no shock is in evidence

on the upper surface.
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7.3.2 Damping Flutter Boundary.  There are two primary components of the Hopf-point
system: the equilibrium system, G(Y’; :\) = 0, and the time-oscillatory system, Gy P = BP. The
damping flutter boundary is interesting to document, since variations in pitch and plunge damping
have no effect on the equilibrium solution, Y*, but do effect P, P, ©*, and @*. Damping also
affects the numerical method. This is true, since without damping, the diagonal elements in the

structural equations are all zero.

Figure 7.12 depicts the flutter boundary as pitch damping, o, and plunge damping, ¢, values
are varied simultaneously. As depicted in Figure 7.5b and Figure 7.6a, equilibrium solutions above
the flutter boundary are unstable to infinitesimal perturbations and solutions below the boundary
are stable to infinitesimal perturbations. It is observed that to a high degree, @* varies linearly
with (o = (5 over the range 0.1 to 0.5. The under-relaxation parameter necessary for convergence
is affected by damping. The lower the damping, the lower w must be for convergence. The under-
relaxation parameter is set to 0.5 for pitch and plunge damping greater than or equal to 0.2 and

set to 0.1 for damping less than 0.2.
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The behavior of ©* as a function of damping is displayed in Figure 7.12b. The very linear
character of @* versus (o = (p is reflected in the critical eigenvalue pair behavior. The linear

behavior of #* and ©* may be aiding in the improved convergence properties as ¢, = {3 is increased.

7.83.8 Static Pretwist Flutter Boundary. The flutter boundary as a function of static
pretwist is the first test of the BGSN5 algorithm for flutter boundary computation. Variations
in ag produce changes in the equilibrium angle-of-attack and therefore changes the equilibrium
aerodynamic solution. The flutter boundary then demonstrates the ability of BGSN5 to compute

solutions for nontrivial, non-symmetric, acrodynamic flowfields.

The static pretwist flutter boundary is shown in Figure 7.13. Each Hopf-point on the bound-
ary takes approximately twenty iterations to converge. The complete flutter boundary requires

approximately four days of computing on a DEC 4620/ALPHA 150 Mhz workstation.

Figure 7.13b displays the behavior of ©* as aq is varied. After ap = 0.25°, there is a large
change in both the reduced velocity boundary and the associated eigenvalue curve. Similar to
the case of the Mach number flutter boundary, it is possible that there is a switch in the critical

eigenvalue pair for ag in the range, 0.25° < ag < 0.5°.
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Time-integration solutions which bracket the static pretwist flutter boundary are provided

in Figure 7.14a and b. The time-integration solution for # = 11.25 is lightly damped to a steady-

11.75 is a stable limit-cycle solution after

state solution. The time-integration solution for

approximately 800 time units. Figure 7.14 verifies that the time-integration behavior is consistent

with the predicted Hopf-point location.
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VIII. Nonlinear Structural Models

Structural nonlinearities can dramatically change the location of flutter points [74]. A class of
structural nonlinearities that produce bilinear torsional moments are of interest to designers. The
applicability of the BGSN4 and BGSN5 algorithms to PAPA models with this class of concentrated

nonlinearities is demonstrated in this chapter.

The previously described algorithms are modified to allow a class of solutions with a structural
nonlinearity to be computed. The governing equations including a bilinear torsional moment are
presented. Then, the structural model is validated independently of the aerodynamics model.

Finally, flutter boundaries are computed for a variety of nonlinear structural model parameters.

8.1 Equations of Motion

The form of the torsional moment curve based on a bilinear structural model is depicted in
Figure 8.1. The model is termed bilinear by the literature because of the two distinct slopes. The

nonlinear restoring moment of the structural model, M,,,, is given by

My = Kole — @) = Ko f(e)(a — ap), (8.1)

where K, is considered a global stiffness, equivalent to what is found in Chapter V. The functional
form of f(a) is modified from the form presented in reference [20] to include a static pretwist, and

takes the form

(¢ —ag) —as; + f; for a>a;+ ap
f(a) = ;fl—"-(a — ao) for —a;+ap<a<a;+ap (8-2)
(0 —ag)+as — fs for o< —a;+ag
or
f(a) = faa + fo, (8.3)
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where

1 for o > a, + ag
foa= é’: for —as+ap<a<a;+ap (8-4)
1 fora < —a; + ag
—ag—as+ fs for a > a5 + ag
fo= -&-(—ao) for —a, +ap<a<a;+ap - (8.5)
—ap+as;—fs for o < —a; + ag

The pitch structural equation, (5.11), is modified to include the bilinear moment curve. Equa-

tions (5.10) and (5.11) become

. o. . 2
h+ 226+ 2(ncah + c2h = c, (8.6)
2 BsT
v er 4
zoh+ '2£a+ _Il‘_;g'a‘l'clf(a) = us_ﬂ_cmeaa (87)

- - () (2)

The pitch natural frequency is defined in terms of the structural model for |a| > a;:

wa = V/Kala. (8.9)

All other parameters are defined in Chapter V.

Following the approach of Chapter V, equations (8.6)-(8.7) are rewritten in a first-order

matrix form:

Sy = K(S,U; ), (8.10)

where

K =M-1QU) - M-'KS, (8.11)
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Figure 8.1 Bilinear Torsion Model

51 1 0 0 0
89 01 0 iz,
S = , M= , (8.12)
53 0 0 1 0
54 0 zo 0 3r2
0 W 0 -1 0 0
wxCi(U) ¢§ 2nez 0 0
Q= ’ , K= , (8.13)
0 0 0 0 -1
2Crmea(U) — c1fo 0 0 afe (a(E)r2

M= — : (8.14)

det = —;—(rf, —z2). (8.15)

It should be noted that for f, = a,, the model reduces to a linear structural model. Also, for f, = 0

and a, # 0, a freeplay structural model is obtained.
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8.2 Nonlinear Structural Model Validation

The PAPA structural model is validated for coupled harmonic motion in & and h following

the approach of Chapter V. Assumed forms of a(t) and h(?),
a(t) = ap + asin(wat), h(t) = hsin(wat), (8.16)

are substituted into the left hand sides of (8.6) and (8.7) to determine consistent forcing functions

Ci(t) and Cp,(t) for the right hand sides of (8.6) and (8.7). The resulting forcing functions are

2 2
)= ”;”" [(—wi + (%) (:—Z) ) hsinwpt + 2¢5 (%) (:—Z) wrhcoswyt — %”widsinwat] ,

(8.17)
BsT 23 ra 2 2 (2 -
Cn(t) = 2 —zowiphsinwpt — ?waasmwat+(ara . Wal COS Wyt (8.18)
r2 (2 2 A .
+ 2 (2) (et asinwat) + 1)

Integration of (8.10) is performed using fourth-order Runge-Kutta integration with the forcing
functions of (8.17) and (8.18). The resulting time histories are compared with (8.16) for various
time steps. The forcing functions (8.17) and (8.18) are held constant over each time step in the
Runge-Kutta integration to emulate the PAPA time-integration algorithm. The chosen parameters

for the validation case are

ap=0% @=15% wo=m, h=01, wy,=02r, a,=05

Ca=C =01, 2=4, p,=125, z,=-0.25 r2=0.25.

These parameters are the same as the Section 5.2.1 validation with a region of secondary torsional

moment slope, —0.5 < a < 0.5, and f,/a, = 0.5. Time steps of 0.1, 0.01, and 0.001 are used
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Figure 8.2 Nonlinear Structural Model Validation for Harmonic Motion in o and A

fS/as At tmax ” Aa “2 ” Ac ”oo ” Ah ”2 “ Ah ”00
0.5 0.1 10 {38 x10"2[822x10"3]292x10"%|4.89x 103
0.5 0.01 10 | 1.18x 1072 [ 7.69x 10~% [ 9.61 x 1073 | 5.10 x 10~
0.5 [0.001| 10 [371x10"3[764x10°° | 3.06x 10-3 | 5.12x 10~%
0.5 0.1 100 | 963 x 1072 [8.22x10°3 | 7.99x10~2 | 5.14 x 10~3

Table 8.1 Structural Model Validation Error Norms

to produce time histories for 0 < ¢t < 10. Figures 8.2a and b display the exact and numerical
approximations of a(t) and h(t) for the chosen time steps. Table 8.1 displays the maximum error
norm and an L3 error of the computed solutions. The maximum error observed in the integration
of (8.10) over 0 < ¢t < 10, using At = 0.01, is 7.69 x 10~%. As in the case of the linear structural
model, this error is much smaller than errors sustained in the discretization and integration of the

fluid-dynamic equations and the value of At is much larger than aerodynamic stability requires.

Table 8.2 displays the maximum error for a variation in f,. The case f,/a, = 1 describes a
linear structural model and corresponds to the validation of Section 5.2.1. Only a slight variation in

the maximum norm is observed for the full range of structural models and all errors are consistent

with an O(At*) method.



folas | N[Bafle | AR

2.00 | 7.893x 10-3 | 4.807 x 1073
1.75 | 7.947x 1073 | 4.813x 1073
1.50 | 8.002x 10-3 | 4.821 x 103
1.25 | 8.056x 1073 | 4.832x 10~3
1.00 | 8.111x 10~3 | 4.845 x 10~3
0.75 | 8.166 x 10~3 | 4.860 x 10~3
0.50 | 8.221x 103 | 4.890 x 10~3
0.25 |8.276 x 10~° | 4.919 x 10~3
0.00 | 8.330x 103 | 4.952 x 10~3

Table 8.2 Error Norms for a Variation in Bilinear Ratio: At = 0.1

Case# | a, fs/as Type Method
66 0.5° 0.5 Point BGSN4
67 0.5° | 0.5-2.0 | Boundary | BGSN4
68 0.25° | 0.5-2.0 | Boundary | BGSN4
69 0.75° | 0.5-2.0 | Boundary | BGSN4
70 1.0° | 0.5-2.0 | Boundary | BGSN4

Table 8.3 Run Summary: Nonlinear Structural Hopf-Point Results

8.8 Nonlinear Structural Model Hopf-Point Results

The nonlinear structural model is applied to the NACA 64A006 PAPA model of the previ-
ous chapter. The following choice of structural and aerodynamic parameters are chosen to allow
comparison with solutions in Chapter VII with a linear structural model and are considered the
baseline:

Teg = 0.375, o = —0.25, (= (o = 0.1, (8.19)

YR — 0.2, 12 = 0.25, py = 125, Mo, = 0.85, ap = 0°,

Wq

(8.20)

and the G646-3 grid is used for all runs. Solutions are computed for wide ranges of a, and f,.
Table 8.3 summarizes the cases for this section. The Hopf-point is obtained using a solution from

the linear structural model of the previous chapter as an initial guess.

Using the BGSN4 Hopf-point and time-integration algorithms, Hopf curves are computed for

fs/as = 0.5, 1.0 and 1.5. Figure 8.3 depicts the Hopf curve for the nonlinear and linear solutions.
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Time-integration solutions follow the procedure discussed in Chapter VII; a converged static airfoil
solution at a non-equilibrium angle-of-attack is computed and used as the initial condition. The
airfoil is not in equilibrium causing it to oscillate. Solutions are stopped when apc changes less

than 1 x 10~* radians.

As one can see in Figure 8.3, for f;/a, decreased from 1.0 to 0.5, the Hopf-point changes by
A@* = —2.71. This change is significant when considering only a £0.5° bilinear region, and can
be described as highly destabilizing. The shape of the Hopf curve also changes. The Hopf curve
for f,/a, = 1.0 has a concave appearance (typical), whereas the +0.5° region of nonlinearity has
reversed the curvature near arc = 0.5°, making a more complex shape. Reducing f, can then be
described as having two effects, a shift of the complete Hopf curve and a change in the concavity

of the Hopf curve near a;.

Increasing f,/a, to 1.5 has a stabilizing effect on the Hopf-point and also changes the shape
of the curve. The critical reduced velocity is @* = 9.139, a +30% shift from the linear value. The
curve appears to develop a cusp at @ = @*, reducing arc for a given increase in % over %*, as

compared to the linear Hopf curve.

Figure 8.4 depicts the flutter boundary associated with o, = 0.5° and a range of f,/a,
(0.5 < fs/as < 1.5). The flutter boundary is obtained using previously computed solutions as
initial guesses for solution points with different values of f,. In general, for f, greater than the
linear value, the under-relaxation parameter w = 0.5 can be used with the grid chosen for this
study. For f, less than the linear value, the under-relaxation parameter must be reduced for

stability. Solutions for f, /o, < 0.5 were not attempted, since w < 0.01 is necessary for these cases.

Figure 8.4 also displays flutter boundaries for values of a, equal to 0.25°, 0.75°, and 1.0°.
Each of the curves are limited from below to f, = 0.5a, for stability. As seen by Figure 8.4,

certain combinations of f, and a; produce the same %*. To determine if a normalization variable
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Figure 8.5 Flutter Boundary: f;/a; = 0.5 — 2.0, My, = 0.85

exists for the system, f,/c, is plotted versus 4* in Figure 8.5. All of the curves collapse onto a
single curve, verifying f,/c, is a normalization variable of the system with a nonlinear structural
model. This normalization variable is further verified by analyzing (8.6) and (8.7). At equilibrium,

fle) = ‘o%(a — ag) implying that f,/c, is more critical than either parameter independently.

Additionally, Hopf-points are computed for a nonzero value of the static pretwist, crg = 0.25°.
This variation in aq allows assessment of changes to the normalization curve as g is changed and
demonstrates the applicability of BGSN5 to PAPA models with structural nonlinearities. Increasing
the static pretwist to 0.25° increases @* and ©* for all values of f,/a,. The amount of increase in

T* lessens as f,/a, decreases.
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IX. Conclusions and Recommendations

This chapter summarizes the accomplishments of the current research. First, a summary of
the important results and the associated conclusions are presented, and then the recommendations

for future research are discussed.

9.1 Summary and Conclusions

In Chapter I a specific set of objectives is provided that defines the scope of the research.
This section provides conclusions from each area of the research and lists the objectives considered

accomplished by the research.

9.1.1 Objective 1.  In support of the first objective, a computer code capable of computing
steady-state solutions with time-integration and also equilibrium solutions for a static airfoil at
angle-of-attack and at transonic Mach number conditions is developed and validated. Validation
of the code is accomplished by grid sensitivity analysis and through comparison with an AGARD

solution [140].

Grid sensitivity is analyzed by varying four grid parameters: the domain size, R,.5, the wall
spacing, Awall, the number of nodes around the airfoil, I, and the number of nodes normal to
the airfoil, J. As Rp,qp increases, the shock effectively moves downstream. Due to the type of
boundary conditions chosen, the solution corresponding to the asymptotic value of C; is achieved
only after 150 chord lengths. Also, a 13.2% variation in Cj is observed from the smallest to largest
domains computed. The wall spacing parameter produces a 4% increase in C; for a change in
Awall from 0.001 to 0.005. As the normal node distribution is refined, C; monotonically increases,
and the asymptotic value is effectively reached for J = 32. As the number of nodes around the
airfoil is increased from 80 to 160, only a 2.8% increase in Cj is observed, implying that a grid of

approximately I = 100 points adequately captures shocks with the present TVD scheme. R,z is



deemed the most limiting parameter since the asymptotic value of C; is found for the domain sizes

larger than 150 chord lengths (a 13.2% variation in Cj is observed).

Allimprovements in grid parameters increased C; towards the AGARD solution. The AGARD
solution is a 320 x 64 point “O”-grid with a 25 chordlength domain. At best, the current method
compares within 6% of the AGARD solution. Good qualitative agreement and reasonable quan-
titative agreement with the AGARD solution gives confidence in the solution method and chosen

grids.

The Newton-TVD method is used to compute solutions for both the NACA 0012 and NACA
64A006 airfoils at various Mach numbers and angles-of-attack. All solutions display crisp shocks
where present and smooth Mach contours, implying that the TVD shock capturing method and

chosen grid combination is capable of resolving the flowfield physics.

Lift, drag, and moment curves computed for the NACA 64A006 are typical of transonic
airfoils and allow comparison for future research. Also, the efficiency with which the lift, drag, and

moment curves are computed with manual continuation show the benefits of equilibrium methods.

Convergence properties of the Newton-TVD and TVD-time-integration solutions are docu-
mented and discussed. The time-integration and equilibrium methods are used to compute a solu-
tion to a residual norm of 105. The time-integration method requires 50, 000 iterations, whereas
the equilibrium method requires only 11 iterations. After 10 Newton iterations and 20,000 ex-
plicit iterations, the solution is no longer changing, as measured by the peak Mach number. The
convergence of Newton’s method with approximate Jacobians is linear with a number of iterations

commensurate with a quadratic method.

Jacobian matrices obtained with finite-difference approximations (called numerical Jacobians)
are used to satisfy Objective 1’s requirement of being easily extensible to viscous flow and fluid-
structure interaction systems. The numerical Jacobian parameter €;4. is an important parameter

in the convergence of Newton’s method. The convergence history for €;4, = 1075 has the best slope




and reaches the minimum residual value of 10714, The €;4. values of 1073, 10~4, 10~7, and 10~3
all produce solutions that asymptote to a residual greater than 10~¢. Numerical Jacobian elements
are adversely effected by truncation error if the value of ¢;4. is chosen too large, and round-off error
if the value of €;,. is too small. All €;,, values produce solutions which asymptote to residual norms
less than 10~9, the value determined to produce a c.onverged flowfield solution. Also, after choosing
the optimal value of €;4. (107°) no difficulties have been encountered in computing solutions for

wide ranges of aerodynamic and grid parameters.

The Newton’s method approach developed in this research is thus efficient for computing
solutions to transonic flows and easily extensible to other governing equations, due to the numerical
Jacobians. The validation, analysis of convergence properties, and computed solutions are sufficient

to consider Objective 1 satisfied.

9.1.2 Objective 2. In support of Objective 2, the code is extended to allow movement
of the airfoil and mesh in pitch and plunge. Forced motion in pitch and plunge is computed and
compared with an independent method to validate the moving airfoil modifications. A Beam-
Warming code, ENS3DAE, is used for comparison. Peak C; values are 5% higher for TVDntiAE
than for ENS3DAE and peak C, values are 15% higher for TVDntiAE than for ENS3DAE [22].
The Euler implicit time-integration scheme, larger time step, and the artificial dissipation model
of ENS3DAE both contribute to a more dissipative scheme than TVDntiAE. The more dissipative
scheme is consistent with smaller amplitude of oscillations for the dynamic motion. The good
agreement between the two methods is sufficient to consider Objective 2 and the first two points

of Objective 4 satisfied.

9.1.3 Objective & and Objective 4.  In support of Objective 3, a pitch and plunge fluid-
structure interaction model is implemented and validated. Validation of the pitch and plunge airfoil
(PAPA) model is accomplished in two ways: Runge-Kutta integration of the structural model for

a known solution, and comparison of a dynamic PAPA solution with two independent methods.
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The first validation tool is a test of the structural equations implemented in the computer code to
ensure an exact solution can be computed. Also, a determination of whether time steps governed by
the aerodynamic equations produce accurate integration of the structural equations. The Runge-
Kutta integration shows convergence of the numerically computed solution to the exact solution as
time step is refined. Also, integration errors of the structural equations associated with time steps
typical of aerodynamic equation stability limits are several orders of magnitude smaller than errors

typical of discretization and integration of the fluid dynamics equations.

The flutter onset point of the PAPA system is computed with the current research code,
ENS3DAE [22], and Kousen and Bendiksen [73] to validate the current method. The critical
reduced velocity, @*, of TVDntiAE is less than 1% lower than the ENS3DAE solution and 3%
lower than the Kousen and Bendiksen solution. TVDntiAE is a less dissipative model than both of
the other methods, which is consistent with the lower value of @*. When the oscillation is forced,
the amplitude of oscillation for @ > @* is greater for TVDntiAE than for the other two methods.
The quality of agreement between the three methods in simulating LCO is greatly reduced from
the agreement in the flutter onset point, since differences in the time-integration schemes become

more important in simulating LCO as peak values grow.

Another important test of the PAPA algorithm is a test of the consistency between equilib-
rium and steady-state solutions computed with the equilibrium and time-integration methods. A
steady-state solution of the PAPA time-integration method is computed and compared with the
corresponding PAPA equilibrium solution. The solutions are indistinguishable from each other for

t > 190. This agreement is necessary for the solution methods to identify the same Hopf-point.

Equilibrium solutions of the PAPA model are computed for variations in the static pretwist,
ag, and the Mach number to document their effects. The static pretwist is varied from 0.25° to
1.25° with a fixed Mach number of 0.8. For a particular «q, the airfoil pitches down from this

value to a reduced angle (aeqy < ag) due to the nose down pitching moment. As 4 increases, the
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amount of pitch down increases, because increasing @ effectively weakens the torsional spring. For
a particular value of @, as ag increases, the magnitude of the pitch down also increases due to the

nose down pitching moment.

The Mach number is varied from 0.63 to 1.2 with ¢ = 1.25°. For a particular freestream
Mach number, as % increases, the airfoil pitches down due to the increasing nose down pitching
moment. In the range 0.63 < M, < 0.95, as M, increases and @ is held fixed, the airfoil pitches
down. For My, = 1.2, the equilibrium « is less than the equilibrium angle-of-attack for M, = 0.95
which is related to the transonic flutter dip phenomenon. Through validation, consistency tests,
and computed equilibrium solutions, Objectives 1 through 4 are considered satisfied for a linear

structural model.

9.1.4 Objective 5.  In support of Objective 5, analysis of the GR algorithm is performed
to determine the workload when applied to the PAPA fluid-structure interaction system. The
GR algorithm involves LU decomposition of a matrix Gy and its square, G%. For systems with
bordered rows and columns, such as fluid-structure interaction systems, G% is a full matrix and
requires O(N?3) operations to LU decompose. Both the memory associated with storing a full
matrix and the computational workload of decomposing the matrix make this method untenable
for 2D airfoil problems with reasonably fine meshes. Therefore, a modified Hopf method, which is

not dependent on a full N x N matrix, is developed.

9.1.5 Objective 6. The resulting algorithms, BGSN4 and BGSN5, are validated with
eigenvalue analysis, time-integration, and a grid sensitivity analysis. The eigenvalue analysis con-
sists of computing the eigenvalues of Gy for various values of %, and determining the particular
reduced velocity for which a pair of complex eigenvalues has a zero real part. The computed eigen-
values produce a stability transition point within 0.05% of the Hopf point computed with BGSN4.
Time-integration is also used to validate computation of the Hopf-point by BGSN4. All solutions

with & < @* are damped oscillatory to a steady-state. Solutions with & > @* are stable limit cycles,
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verifying the existence of a supercritical Hopf-bifurcation. The Hopf-point computed directly is in

excellent agreement with the Hopf-point location bracketed by the time-integration analysis.

Grid effects on the computed Hopf-point are documented for a limited range of grid param-
eters. Increasing the number of points around the airfoil, reducing the spacing near the wall, and
increasing the number of points normal to the airfoil all decrease the critical reduced velocity.
Increasing the domain size, on the other hand, increases the critical reduced velocity. All varia-
tions in grid parameters performed result in less than an 11% variation in @* from the baseline
grid. Validation of BGSN4 and BGSN5 through eigenvalue analysis, time-integration, and the grid

sensitivity analysis contribute to the completion of Objective 6.

Since the BGSN4 and BGSN5 algorithms are new, it is important to describe the convergence
properties. The BGSN4 algorithm is compared against Newton’s method for a coarse grid to
determine the degradation of the method from the “theoretical best.” Also, the BGSN4 and BGSN5
algorithms are compared against each other to determine the penalty of solving the full five-equation
system. Finally, the BGSN5 method is used to compute a Hopf-point solution with various €;q

values to determine the effect on convergence and accuracy.

The Newton’s method solution for the (3N +2) x (3N +2) system is compared to the BGSN4
algorithm in full matrix form with w = 1. Convergence is nearly identical, with BGSN4 taking
one additional iteration to converge. The BGSN4 solution with w = 0.5 takes 39 iterations to
converge due to the under-relaxation, and the w = 0.1 solution takes 252 iterations to converge.
The comparison with Newton’s method implies that whenever under-relaxation values of 1.0 can

be realized the BGSN algorithms practically recover the full matrix convergence properties.

The BGSN4 and BGSN5 algorithms are compared to each other for the same solution with
w = 1.0. The minimum attainable residual norm is four orders of magnitude larger for BGSN5
than BGSN4. This is due to the numerical evaluation of (Gy P)y and the associated value of

the €;4 parameter. The effect of €;4. on convergence and accuracy of the solution is assessed by




varying €jqc from 1073 to 1073, The minimum attainable residual is largest for ¢;4. = 10~% and
smallest for €54 = 103 due to truncation error in the numerical Jacobians. The solution is not
converged until €;4, > 107, since Gy is an element of the nonlinear system of equations. For this
reason, a compromise between accuracy and convergence must be accomplished, or independent

€jac parameters for Gy and (Gy P)y must be used.

The BGSN4 and BGSNS5 algorithms are used to compute a Hopf-point for the baseline grid to
determine the computational workload. The BGSN4 solution is within 30% of the workload required
to compute a regular point for the same number of iterations. It should be noted that, depending on
the under-relaxation parameter, Hopf-points typically take 5-10 times the number of iterations of
a regular point to converge. The BGSN5 algorithm requires six to seven times the computational
time of a regular point for the same number of iterations due to the computation of (Gy P1)y
and (GyPs)y. The Jacobian matrices (Gy Py)y and (Gy P;)y are much more computationally
expensive than Gy. A more efficient computation of G can improve relative performance since it is
used in the computation of Gy, (Gy P1)y, and (Gy P2)Y. Objective 5 is satisfied by BGSN4, and

with improvements to the calculation of G, BGSN5 can also satisfy this objective.

9.1.6 Objective 7. The BGSN4 and BGSN5 algorithms are used to compute flutter
boundaries for variations in Mach number, pitch and plunge damping, and static pretwist. The
flutter boundaries are computed with manual continuation, which reduces the number of iterations
for a particular flutter point by a factor of five. This savings allows the complete Mach and damping
flutter boundaries to be computed in approximately 24 hours on a DEC 150 Mhz workstation. The
static pretwist, which is computed with the BGSN5 algorithm, takes four days of computation on
a DEC 150 Mhz worksta-tion. It is believed that the efficiency of computing flutter boundaries has
been greatly improved over explicit time-integration methods. All flutter boundaries are verified

with time-integration.
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The Mach flutter boundary has a rapid rise near M, = 0.85 making it difficult to obtain
solutions for My, > 0.855. This behavior displays the weakness in computing flutter boundaries
with manual continuation. The damping flutter boundary shows practically linear behavior over
the range 0.1 < (o,» < 0.5. As damping is increased, the under-relaxation parameter can be
increased. The author speculates that this is due to the damping terms on the diagonal of the

Jacoblan matrix.

The static pretwist flutter boundary is computed with BGSN5, since g # 0. This flutter
boundary demonstrates the ability of the algorithm to compute nontrivial equilibrium and Hopf-
point solutions. The flowfield must respond to changes in reduced velocity as the solution converges
as opposed to the symmetric cases where the aerodynamic solution is unchanged as @* varies.
The flutter boundaries computed and verified with time-integration imply successful completion of

Objective 1 through Objective 7 using a linear structural model.

The code is modified to allow a class of nonlinear structural models. The modified PAPA
model is validated by comparison with an exact solution of the structural equations. Various time
steps are used to determine if the solution converges to the exact solution as time step is improved
and to determine if the nonlinearity in the structural model adds a restriction to the time step
greater than the aerodynamic stability restriction. For a constant (s, f;) pair, the error associated
with integration of the structural equations is much smaller than errors in spatial discretization and
integration of the aerodynamic equations and consistent with an O(At*) method. The flutter point
of a nonlinear structural model with a; = 0.5° and f, = 0.25 reduces the reduced velocity by 2.71
or 40% as compared to the linear structural model. This movement is significant for only a £0.5°
nonlinear region. The shape of the Hopf curve associated with @, = 0.5° and f;/a, = 0.5 also
changes near the value of a,. The flutter point for &y = 0.5° and f, /e, = 1.5 increases the critical
reduced velocity by 32%. The shape of the associated Hopf curve can be described as having a

cusp centered about ar¢c = 0°.




A family of flutter boundaries are computed for variations in the structural parameters «, and
fs. All solutions collapse to a single flutter boundary when plotted as f, /o, versus @*. This implies
that the size of the nonlinear region is not important; only the slope of the torsional moment curve
at equilibrium is significant. Therefore, a reduced number of solutions are necessary to determine
the flutter boundary of a nonlinear structural model in this class. The flutter boundaries presented
are sufficient to determine that all seven objectives are satisfied for BGSN4 and with relatively

minor changes it is believed that the BGSN5 algorithm will satisfy all objectives as well.

9.2 Recommendations for Further Research

Three major areas of improvement to this work are thought to be necessary: aerodynamic
modeling improvements, structural modeling improvements, and algorithm improvements. The
major improvement in the aerodynamic model should be the addition of viscous terms and a
variety of turbulence models. Although the aerodynamic model incorporates the Euler equations
for the current study, the method is not limited to this equation set. Addition of viscous terms is
straightforward due to the numerical calculation of Jacobian elements. Implementing the Navier-
Stokes equations in the PAPA model is recommended for future research to document the change
in the flutter boundary with shock-wave boundary-layer interaction. The viscous model should
incorporate several turbulence models to assess their impact on the flutter boundaries. Another
recommended improvement to the aerodynamic model is to implement more sophisticated farfield
boundary conditions. Nonreflecting characteristic farfield boundary conditions help in alleviating
the need for very large domains, shown to be the most sensitive grid parameter of the current

method.

An area of interest not covered by the current research is deformation of the airfoil shape and
the effects on the flutter boundary. This extension of the structural model allows more complex

motion and is closer to the state of the art in the field of aeroelasticity. Another extension of the
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structural model is to add a trailing-edge flap so that the phenomenon of trailing edge buzz can be

analyzed with the modified Hopf algorithm.

Algorithm improvements are necessary if more complex aerodynamic and structural mod-
els are implemented which increase computational costs. Improvements in the computation of G
will have a significant impact in the overall performance due to the numerical Jacobian compu-
tation. Also, implementing a more sophisticated continuation procedure can improve both the
equilibrium solution computation and allow more complete flutter boundary calculations. Finally,
improvements in the algorithm to allow solutions with no structural damping to be computed are

important to improve performance and provide more complete flutter boundaries.
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Appendiz A. Harten-Yee Total Variation Diminishing Scheme

The Harten-Yee [149] total variation diminishing scheme (TVD) is presented in this ap-
pendix. First, the one-dimensional form is developed and applied to a one-dimensional model
problem. Next, the scheme is extended to include two-dimensions with generalized coordinates.

Also, modifications to the scheme to allow moving meshes is provided.

A.1 One-Dimensional TVD Scheme

The first-order accurate TVD scheme is developed by taking the hyperbolic conservation laws

for the gas dynamic equations,

oU | OF(U) _

St =0 (A1)
P pu
E, (Bt +p)u

and rewriting with difference operators for constant temporal and spatial node spacing, (At, Az),

to obtain
1 n,—F"
L Sl £ SN (a3)
At Az
Solving (A.3) for U*! one obtains
UM = UP = M(Ffyy = FILy), (A.4)

where A = ZA%. TVD schemes modify the fluz function F' to enhance shock capturing, and to ensure

physical solutions:

UPH = U - MFL, - Fry). (4.5)



The modified fluz is defined as follows:

. 1
Froy = S + Fi) + B}, 00, (A.6)

1
2

where R;, 1 is composed of rows of eigenvectors, a, of the Jacobian matrix Fy evaluated at i + %

and ® = (¢!, ¢2, ¢%)T with

:-+% = ‘7(“5+§) (gzl+1 + 91) - ¢(“5+% + 7z!+§)0‘5+§- (A7)

— R'1:+%A,~+%U’ where A, U' = U, —U/ and R"1:.+% are the left eigenvectors.

The term o! ,

1+-%
The term % is the entropy function, which ensures that only physical solutions are computed, and
is defined:

CH)  for |2] < &

24,

¥(2) = (A.8)

|z|  for |z| > &
The positive parameter 6; must be bounded by 0 < &, < 1 for stability [148]. The term o is defined
by

o(2) = 5 [9(z) 37 (A.9)

with A equal to At/Az. The term g' is a limiter function associated with the [*? eigenvalue. The

particular limiter chosen is the minmod limiter:

¢ = S~maz[0,min(la:._% ,S'-ai._}_%)], (A.10)
§ = sign(ai._%). (A.11)
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The term '7: +1 is called the mean characteristic speed induced by g' [148] and is defined by
2

L —d Na if of
Yipr = (Givrg =900 eipy; oy ; #0 (A.12)
2
. 1 —
0 1fai+%’j =0

Equation (A.12) requires a conditional statement which can be inefficient on vector machines.
Moran [93] developed an expression which approximates (A.12) to slightly above machine precision
for €,,, slightly above machine precision;
1
oy
| | 1 it3
iy = i1 — 9:) (cv:f;—-:efn) - (A.13)
2
Information is explicitly known on the node 7 instead of between the nodes at i + %, which
requires some form of averaging. Roe [108] uses a special form of averaging that has the compu-

tational advantage of perfectly resolving stationary discontinuities for the gas dynamics equations.

Roe averaging takes the following form

. Duip1 +
i1 —T T (A.14)
s .
. 2
D = (”—+1) (A.15)
Pi

and is used for each of the unknowns in R, R™!, and a. The system of equations (A.5)-(A.15) is
a second-order-accurate, upwind, shock capturing scheme for the one-dimensional hyperbolic con-

servation laws. Yee [148] proposes to use (A.5) to compute successive time levels until convergence

is achieved for a steady-state computation.

A.2 One-dimensional TVD Model Problem

An objective of the research is to compute steady-state solutions for the airfoil at transonic

speeds. Towards this end, a model problem with a steady-state solution and a shock wave was
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chosen. This model problem is an axisymmetric nozzle with inviscid walls. In the following sections
the application of the previously described scheme to the mode! problem is described. Results and

conclusions are presented.

A.2.1 Governing Equations. The average of the flow in an axisymmetric nozzle with a

cross sectional area, A(z) satisfies the one-dimensional system of equations

oU | OF(U)
st o = S(U) (A.16)
pA mA 0
U=|ma |, FU)=| (mu+p)a |, SU)= pdd (A.17)
EiA (. + p)ud 0

where p is the density; m = pu is the z-momentum; and E; is the total energy per unit mass. The
equations in system (A.16) are the continuity, momentum, and energy equations in conservative
form with the assumption of inviscid flow. The chosen geometry, A(z), is depicted in Figure A.1
and is described by

A(z) = 1.398 + 0.347 tanh(0.8z — 4). (A.18)

By analyzing the characteristic field, one can determine which boundary conditions are appro-
priate to specify and which conditions must be determined from the internal flow. For supersonic
inlet conditions, three characteristics come from outside the computational domain, indicating that
three flow properties may be specified at the inlet: p;,, mj,, and Ey;,. At the outflow boundary,
only one characteristic comes from outside (downstream); and two come from inside the computa-
tional domain. This allows for one of the the variables, p, m, or E; to be specified while the other
two conditions must either be extrapolated from the interior or determined from characteristic com-

patibility conditions. The density at the outlet, poy¢, is specified for ease of implementation. Both




A(x)
2n

Figure A.1 Quasi-One Dimensional Nozzle Geometry

extrapolation and characteristic boundary conditions are used to determine their effect on accuracy
and convergence. Extrapolation was implemented by enforcing a constant slope to second-order

accuracy at the last interior point, resulting in
Mout = 2Moyut—1 — Mout—2, (A,19)

Etout =2 Etout—l - Etout—2‘ (A20)

A.2.2 Application of Numerical Scheme. The system of equations (A.5) — (A.15) is a
general scheme for hyperbolic conservation laws in one space dimension. This section will discuss
tailoring the scheme for the model problem described in the previous section. Equation (A.5) was
derived from the hyperbolic conservation laws without a source term. To include the source term,

start with (A.16) and perform the same procedure as contained in (A.3)- (A.5) to obtain

Urt = up — 2 (171.+% ~Fu+ A:cS,:) , (A.21)




where S; is defined in (A.17) and (A.6) —(A.15) are used as previously described. To evaluate (A.6),

aﬁ 1) R:. 1) and R“li_l_% are needed. These terms are obtained by first obtaining the Jacobian
2 2
matrix Fy: i )
0 1 0
Fy = A(z) 3y - Du? —u? B-7)u (¥=1) |- (A22)

ulf(y-1)u?—H] H-(y-1)u? qu

The total enthalpy, H, is given by

H=(E+ )l— ¢ +ie (A.23)
=(Li+p P y—1 32 .
The eigenvalues of Fiy and the associated right eigenvectors are
U—-c
a= u (A24)
u+ec
1 1 1
R=A@)| u-c U utc |- (A.25)

H—uc 3u? H+uc

The I** column of the R matrix relates to the I** row in the eigenvalue vector a. To compute «,

R~ is needed:

abi+8) —3(ub+3) 3b

_ 1

=g 1om bu by |- (A.26)
%(bl—% -l(ubg—%) é—bz




Knowing R~!, & can be computed giving

21+ L)Ap — L(uby + 1)Am + 1b,AE,

a= (1= b1)Ap + byuAm — b,AE, ; (A.27)

%(bl - %)Ap— %(ubg - %)Am+ %bzAEi

where
u?
bi=(y— 1)%5, (A.28)
and
1

The dependent variables of @, R, and « are Roe averaged quantities as previously described. New-
ton’s method is used to solve

Fiy1 = Fioy + AxS; =0, (A.30)

the time-independent form of (A.21). Equation (A.30) represents four equations for each node value,
i. In Section 2.3 the variable F" in (2.18) is a vector of dimension 4n (where n is the number of nodes)
and consists of a collocation of (A.30) for each i. A function evaluation refers to an evaluation of
F. The explicit time-integration method, (A.21), following the method of Harten [50], is used to

compute a steady-state solution and then compared to the Newton’s method solution.

A.2.8 Resulls and Conclusions.  Using the two codes developed previously, hereafter called
QSHKNEW (Newton’s method) and QSHKTIM (time-integration), several studies are made. An
L norm of the function evaluation is used to test for convergence, with a tolerance of 10713, The
exact solution is computed with specified inlet conditions (p;n, Min, Etiy,) and an assumption of

the location of the shock at # = 5. Isentropic relations are used to compute data prior to the shock




[1]. The inlet Mach number, M;,, for air (assumed to be a perfect gas) is calculated by

My, = —n (A.31)
Pin (14 RTin)2
RT, = Iz (A.32)
Pin
1m?
pin = (v—1) (Etin - 5';;';:1) . (A.33)

Equation (A.18) is used to compute the area at z locations in the nozzle, such as the shock position

area, A;. The reference area, A}, can be computed by

A’{ = A;n

216 M2\"2
’12—5Min (1 + %) ] . (A.34)

The Mach number just upstream of the shock, M;, can be computed with (A.34) by substituting
Mj in for M;, and A, for A;,. The reference area AJ is constant for any position upstream of the
shock. The nonlinear equation resulting, with unknown Mj, can be solved iteratively. The exact
solution for any given z position prior to the shock can be computed by substituting the area, A;,
into (A.34) and iteratively solving for the Mach number, M;. The density for a given Mach number

can be computed by

pi = |~——L| pin- (A.35)

Normal shock relations [1] are then used to compute quantities across the shock at £ = 5. The

density ratio and the Mach number across the shock are computed by

_p_2_ _ 6M12
g MZ+5 (A.36)
1
MZ+5)\?
M, = (=112, .
? (7M12—1) (A.37)




Case | Grid € c
1 20 |[0.01 (1.0
2 50 | 0.01(1.0

Table A.1 Summary of Computer Runs for QSHKTIM and QSHKNEW

The same isentropic relations are then used to compute quantities following the shock. The outlet
density is computed at z = 10 and is then used with the inlet conditions to define the numerical

boundary conditions for both numerical methods:

0.5020

Uin=1| 06521 |, pPout =0.7519 . (A.38)

1.3758

The two computer codes QSHKNEW and QSHKTIM use the same subroutine to compute
the function evaluation, F', consisting of (A.30) for each node. QSHKTIM evaluates F' and then
computes a solution vector at the next time level by (A.21). QSHKNEW evaluates F', uses F to
compute elements of the Jacobian matrix, and then computes a Newton iterate by (2.18). Both
codes compute solutions on a uniform grid and either linearly interpolate initial data between
the boundary conditions or use a restart file. Table A.1 is a summary of the cases computed by
both codes. Due to the necessity of a good initial guess for QSHKNEW, QSHKTIM is used to
compute a restart solution with a norm of 10~2. Both codes then use the restart file for comparison
purposes. Figures A.2 and A.3 show typical convergence histories for QSHKNEW and QSHKTIM,
respectively. As one can see, QSHKNEW converges quadratically, whereas, QSHKTIM converges
linearly with scalloping. Scalloping has been observed in convergence histories of explicit TVD
schemes in [149] for computations of flow about a blunt body with reflected shock waves. Results
of an error norm based on a comparison of exact and numerically computed data at a node, and

the number of iterations to convergence are presented in Table A.2 for all cases run.
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Case QSHKNEW QSHKTIM
Iterations Error Iterations Error
1 10 2.37 x 1072 3657 2.39 x 10~2
2 8 1.46 x 10~2 11879 6.55 x 1072

Table A.2 Convergence and Accuracy Summary of Cases Run

IIFI

10-‘5 el 1 ] | B | L L PSR §

1.0 20 3.0 4.0 5.0 6.0 7.0 8.0
Iterations

Figure A.2 Convergence History of QSHKNEW (Case 2)

In conclusion, it has been shown that Newton’s method is a viable method of solving the
nonlinear algebraic system of equations resulting from implementation of a TVD scheme for the
Euler equations in one space dimension. Newton’s method is in fact more robust than the explicit
TVD time marching method. Newton’s method is able to compute an accurate solution with

extrapolation used for boundary conditions with no degradation of convergence rate or accuracy.

A.3 Two-Dimensional TVD Scheme

The Euler equations in two-dimensions are solved by employing an explicit algorithm that

splits the multidimensional finite-difference algorithm into a sequence of one-dimensional opera-
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Figure A.3 Convergence History of QSHKTIM (Case 2)
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Figure A.4 Grid Sensitivity Study: 20 Nodes (Case 1)
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Figure A.5 Grid Sensitivity Study: 50 Nodes (Case 2)

tions [2]. The resulting algorithm is described as

n _ fintl/2x
LyUss = Ui i

1l
-y
b~
|
2
/N
Q
=
o8

i-1) (A.39)

~nt1/2 Ant1/2 ~n+1/2 ~n+1/2
LfU::J / = Ui,j / _— At (Fi-f-%,j - Fi—--;-,j y (A40)
with
UM = Le L, U7 (A.41)
The TVD flux 13",-+ 1 ; takes the form
~ _ 1 N « 1 A A 1
Fivgj =5 |GoigFis+ Ey,-,,-Gi,j)E; +  (oipr i P + £yi+1,jG"+1,J')Ji+1,j
1
Re ',y B0 1 . —— .
+ $itliritdi Ji+§,j (A 42)
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The TVD term Re,, ; .®,, 1 . is developed utilizing the local-characteristic approach, which is a
Ez+2,] i+3,]

generalization of Roe’s approximate Riemann solver. The Jacobians A and B of F and G are

required and can be written as

A=(&LA+¢B))J, B=nA+nB)/J,

where A = Fy, B = Gy, and

[ 0 1 0
Ao (=D +0?) — o (8 —7)u (L=
K [%(7— D(w?+v?)—H] H-(y-1u? (1-17)uv
[ 0 0 1
B —uv v u

Br-D@ )=t (= @-p

| v Ay-D@?+v?)—H] (1-7uw H-(y-1)p?

The total enthalpy, H, and the speed of sound, ¢, are given by

= (v—1p

The eigenvalues of A, denoted a; = (a},af, al, ag)T, are

Exu+Eyv — kec
Eeu+ &y
ag =

Eau+&yv + kee

fzu‘i'fyv
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1
1 2
L/ §(u2+v2), c= (ZE) )

(v-1)

Yu

(v-1)

Yv

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)




where
ke = /&2 + &% (A.48)

The right eigenvectors of A, R¢ = (R}, R, R, R}), and the associated left eigenvectors, REI =

(R‘I;,R‘IE,R‘I?,R‘I‘;), are

1 1 1 0
u—kic u u+kic —k3
Rf - b (A'49)
v — kgc v v+ kac k1

H—kyuc—kove L(u?+v?) H+kiuc+kave kv — kou

(b1+k1u/c+k2v/c)/2 (—bzu—kl/c)/2 (—bzv—kz/c)/Z b2/2

-1 1-— bl bgu bzv —bz
R = , (A.50)

(b1 — k1u/c— kav/e) /2 (=bau+ki1/c)/2 (=bav+kafc)/2 by/2

kou — kiv —ks ki 0
where
o &y
k= ——, ky=—1— (A.51)
Ve +&° Ve + &7

by =(y —1)/c?, b1 = ba(u? + v?)/2. (A.52)

The term ®;, 1 ; in (A.42) is defined as

1 2 3 4 T
LRy =( i+%,j’¢i+%,j’¢i+%,j’¢i+%,j) ) (A.53)

where

l§ — i 1 i i 1 i
irdg = 00y g5) (G +905) = ¥(oipy s + %4y )%y 0 (A.54)
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The term ! i = R‘li_,_%’jAH_%,jU' where Ai_{_%’jU' = U,-I_H’j - Ui',j and R‘li-+1 . are the left

l’+% 24
eigenvectors. The term 1 is the entropy function, which ensures that only physical solutions are
computed, and is defined:

G4 for l2] < 61

26,

W(z) = (A.55)

lz|  for |z| > 6
The positive parameter §; must be bounded by 0 < §; < 1 for stability [148]. The term o is defined
by

o(2) = 3 [9(z) - 37 (A.56)

with A equal to either At/A¢ or At/An. The term g' is a limiter function associated with the I**

eigenvalue. The particular limiter chosen is the minmod limiter:

gi; = g-mam[O,min('ai_%’j ,S’-a£+§,j)], (A.57)
S = sign(aﬁ__li’j). (A.58)

The term %!, , . is called the mean characteristic speed induced by g' [148] and is defined by
t+3.J

(ghory — 9t/ ifad,,  #0
B » +35 20
heps = o Uogs 7O (459

. I —
0 1fa‘.+%,j =0

If ¢’ is set to zero the scheme degenerates to a first order upwind TVD scheme. The modified flux

function G is developed in like manner.
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The eigenvalues and eigenvectors of B are obtained by replacing ¢ in (A.47)-(A.51) with 7:

Nt + Nyv — kye

n. U+7] v
ay = o , (A.60)

Net + Ny + kye

Nzt + Nyv

ky = /102 + 1,2 (A.61)

There is no change to (A.49) and (A.50), the change of variable occurs in the definitions of (A.51):

k= B k= (A.62)

\/77:02+77y2’ 2- \/7?:1:2'*'77312’

and

— p-1
a,“.’j_i_% = .Iz,7 1,J+%Al’]+%U. (A.63)

It is important to remember that the method requires determining a, R, and R~! at cell interfaces,
i £ % or j=+ %, which necessitates calculating the metrics at these locations. The cell interface

metrics and Jacobian’s are average values of cell centered values:

1 1
fzi+.;.,j = ‘2‘(fx§+1,j +€z‘i,j): fyH.%,j = 'Z'(Eyz‘+1,j +£yi,j)a (A-64)
and
1 1
Moij+y = 5Ueijor+Moig)y Myijyr = 5005500 + 5 5), (A.65)
and
1 1
Tirgs = gUini +0ig), Jijey = 5hgen + Jig)- (A.66)
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The matrices A = % and B = g—g— differ from (A.44) and (A.45) because of the terms relating

to a moving mesh and are defined

e 1 0 0 -
P B R B e TV SR E U A T
—uv v (u —uy) 0
u[fy-D@+v)-H]  H-(y-D’  (-7w (r-Dut(u-u)
] (A.67)
[ —v+(v— vg) 0 1 0 -
o —u (v —1v,) u 0
WD+ -0 (1-7u Q-7+ (v—1vy) (r-1)
v -D+v) - H] (I-7w  H-(G-10  (7-Dv+(-v)
] (A.68)

The eigenvalues of A, denoted ag = (a%, a?, a?, ag)T, are

€a(u —ug) + & (v — vg) — kee

ac = €o(u—ug) +&y(v —vy) ‘ (A.69)

€o(u—ug) +&(v —vg) + kec

a(u — ug) +&y(v —vy)

The eigenvalues of B can be obtained by replacing ¢ with 5 in (A.69). The definitions (A.48)-(A.52)

are unchanged for the moving mesh formulation.
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Appendiz B. Numerical Jacobian

The computation of Jacobian elements with finite-difference approximations allow Newton’s
method to be applied to complex nonlinear discrete systems. Orkwis [98] successfully applied
Numerical Jacobians to a Roe flux-difference splitting scheme. He found that in all cases the

numerical Jacobians performed as well as analytically computed Jacobians.

This appendix presents the numerical Jacobian method used in the current research and
applies it to a two-dimensional model problem. Also, more complex Jacobian matrices necessary

for a Hopf-bifurcation point computation are presented.

B.1 Regular Point Jacobian Matrices

The complexity of TVD schemes make the analytical calculation of Jacobian elements unten-
able. Since even analytic Jacobians are only as accurate as the precision of the computing machine,
the author proposes a numerical evaluation of Jacobian elements via a first-order-accurate, forward-

difference:

9G: _ Gi(Y +eg;) — Gi(Y —

Y, : %) 4 o(e) (B.1)

The value of € is some small number, generally on the order of the square root of machine precision
and becomes the order of error of the Jacobian element [142]. The term é; is the j* standard basis

element.

Finite-difference methods produce Jacobian matrices which are banded and sparse. To ensure
computational efficiency, the elements of the Jacobian matrix which are known to be zero are not
calculated. This can be done since finite-difference approximations to the Navier-Stokes equations
have a computational stencil of variables which influence the calculation of the equations at the
node. A computational stencil is the set of nodes which affect the calculation of an equation at a
particular node. Any variables outside of the stencil have no effect on the equations at the node.

This implies that a row of Jacobian elements (constant ¢, varying j in (B.1)) can be calculated by
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Streamfunction-Vorticity Driven Cavity

Grid | Analytic (CPU sec) | Numerical (CPU sec) | % Difference
25 x 25 37.0 40.9 10.7 %
50 x 50 433.3 479.4 10.6 %
85 x 85 3505.66 3553.88 1.37%

Table B.1 Comparison of Numerical versus Analytic Jacobian Matrices

perturbing each variable in the stencil and evaluating (B.1), while all other elements in the row are
zero. Calculating rows of the Jacobian matrix as previously described is a valid approach but it
requires a separate computation of all associated equations, termed a function evaluation call, for
each perturbed equation. Calculating columns, on the other hand, allows one function call for each

column of the Jacobian, making a more efficient method.

It was necessary to determine if this numerical Jacobian method was efficient and did not
degrade the quadratic convergence of Newton’s method. To do this a two-dimensional model
problem was used. The model problem consisted of the streamfunction-vorticity formulation of
the driven cavity. Central differences with no artificial dissipation was used for the discretization
of the governing equations. TVD discretization was not employed because of the difficulty in
obtaining the analytical Jacobian elements. As one can see from Table B.1, the calculation of
the numerical Jacobian adds a 10% inefficiency for coarse grids but only 1% for finer grids. The
finest grid consisted of 14,450 degrees of freedom. An airfoil calculation may consist of 51,200
degrees of freedom for the grid depicted in Section 3.4, implying airfoil calculations should require
approximately 1% of overhead from the numerical Jacobian calculation. The reduction in overhead,
measured in percent of the total time, is due to the impact of Gaussian elimination as the number
of nodes is increased for a two-dimensional problem. In any case, < 10% is very reasonable,
considering the ease of coding and extreme difficulty, if not impossibility, of analytically computing

the vast number of Jacobian elements for a TVD scheme.
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B.2 Hopf-Point Jacobian Matrices

Several vectors and matrices are necessary for the Hopf bifurcation calculation which were
not necessary for the regular point computation, such as (Gy P;)y. The Jacobian matrix (Gy P1)y

is computed to O(¢) by utilizing a Taylor series expansion twice giving the following relationship:

Gi(Y +€Py 4+ ee;)— Gi(Y +¢ee;) — Gi(Y + €Py —¢e;) + G; (Y — ee;
[(G}’Pl)Y]i,j= z( 1 ]) ( 1)262 1( 1 J) z( ])+O(€).

(B.2)




Appendiz C. Bordering Algorithm

Occasionally, linear systems with mixed matrix structures appear in engineering problems.
One such linear system involves a matrix with a large banded structure bordered by a small number
of full rows and columns. It would be inefficient to solve this system with a full matrix linear system
solver, since the majority of the matrix is banded. For this reason, a method of partitioning the
banded terms from the bordered elements, allowing efficient solutions of the linear system with
a banded matrix solver is presented. Methods similar to this have been used in other research

problems [13].

The bordering algorithm is designed to solve linear systems with a special structure in the
linear system. In Figure C.1 the A matrix is an n X n matrix which has a special structure (i.e.

banded). The linear system resulting from the blocked matrices of Figure C.1 can be described as

Az1+ Bzxy = by, (Cl)

Czy+ Dzy = b,. (02)

The dimensions of A, B, C, and D are the edge values, either m or n, in Figure C.1. Premultiplying

(C.1) by A~! gives the relationship

z + A_IB:L'Z = A_lbl. (03)

The columns of A~ B are computed by solving m linear systems of the form

Aa; = B;, (C.4)
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m C D||x

Figure C.1 Matrix Structure

where B; is the i® column of the matrix B and o; is the i*® column of the matrix A~!B. The

vector A~!b; is computed by solving the linear system

AO[() = bl.

Equation (C.3) can then be rewritten as

21+ [a1,- -, am] 22 = ap.

Premultiplying (C.6) by C gives

Cry 4+ Kzg = Cay,

where

K=Clay, -, anm].
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Subtracting (C.7) from (C.2) gives the relationship

(D - K)xz = bz - Cao, (C9)

an m X m linear system for z;. Knowing 5, (C.6) can be used to obtain z;. The following steps

summarize the border algorithm:

Solve m + 1 linear systems (C.4)-(C.5) with LU decomposition

Compute the m x m matrix K using (C.8)

Solve the m x m linear system (C.9) for z,

Compute z; by (C.6).



Appendiz D. TVDntiAE Run Matriz and Grid Specification

This chapter provides a single source for all cases run in the document. All tables are extracted
from the chapters without modification. Section D.1 provides the run tables and Section D.2
provides a summary of the computational time required to compute the solutions. Section D.3

provides a listing of the performance profiles for BGSN5 and BGSN4.

D.1 Run Matriz and Grid Specification Tables

See the following tables.

D.2 Computer Usage Estimate

Several computers were used to compute the solutions of the previous section. All are DEC
Alpha machines with various CPU frequencies and bus structures. The following is a list of the

machines used:

DEC 4620/Alpha AXP 150 Mhz Dual Processor workstation with 384 Mb of RAM

DEC 2100/Alpha AXP 190 Mhz Single Processor workstation with 128 Mb of RAM

DEC Kubota/Cobra Alpha AXP 133 Mhz Single Processor workstation with 128 Mb of RAM

DEC Alphastation 400 233 Mhz Single Processor workstation with 128 Mb of RAM

DEC 3000/Alpha AXP 120 Mhz Single Processor workstation 64 Mb of RAM

The vast majority of the runs were completed on the first and second machines. Using

performance estimates based on Chapter VII, 2500 hrs of computer resources is estimated.
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Grid# ] I | J | Rnar ] Ayall
NACA 0012 Airfoil

G12-1 80 | 120 | 100 | 0.001
G12-2 80 | 80 50 0.001
G12-3 80 | 64 25 0.001
G12-4 80 60 20 0.001
G12-5 80 | 56 15 0.001
G12-6 80 | 42 10 0.001
G12-7 80 42 10 0.003
G12-8 80 | 42 10 0.005
G12-9 80 | 32 10 0.005
G12-10 80 16 10 0.005
G12-11 {160 | 32 10 0.005
G12-12 | 120 | 32 10 0.005
G12-13 | 80 | 32 10 0.005
Gl12-14 80 32 10 0.005
G12-15 | 80 | 32 10 0.005
G12-16 80 32 10 0.005
G12-17 80 32 10 0.005
G12-18 | 320 | 64 25 0.001
NACA 64A006 Airfoil
G646-1 | 100 | 31 15 0.015
G646-2 | 100 | 15 10 0.001
G646-3 | 100 | 15 10 0.015
G646-4 | 100 | 31 15 0.005
G646-5 | 100 | 15 10 0.005
G646-6 60 15 8 0.015
G646-7 | 60 | 15 8 0.005
G646-8 | 60 | 15 10 0.005
G646-9 | 60 | 13 4.1 0.005
G646-10 | 30 9 6 0.005

Table D.1 Grid Definitions (Table 3.1)




Casedt | Grid# I J | Rnaz | Dwan | 61 Vsl C Type
1 G12-1 | 80 | 120 | 100 | 0.001 0 0.5 | 0.3432 | EQ
2 G12-2 | 80 | 80 50 0.001 0 0.5 | 0.3286 | EQ
3 G12-3 | 80 | 64 25 0.001 0 0.5 | 0.3211 | EQ
4 G12-4 | 80 | 60 20 0.001 0 0.5 [ 0.3173 | EQ
5 G12-5 | 80 | 56 15 0.001 0 0.5 | 0.3084 | EQ
6 G12-6 | 80 | 42 10 0.001 0 0.5 ]0.2997 | EQ
7 G12-7 | 80 | 42 10 0.003 0 0.5 | 0.29035 | EQ
8 G12-8 | 80 | 42 10 0.005 0 0.5 | 0.2877 | EQ
9 G12-9 | 80 | 32 10 0.005 0 0.5 | 0.2871 | EQ
10 G12-10 | 80 | 16 10 0.005 0 0.5 | 0.2700 | EQ
11 G12-11 | 160 | 32 10 0.005 0 0.5 | 0.2954 | EQ
12 G12-12 | 120 | 32 10 0.005 0 0.5 | 0.2918 EQ
13 G12-13 | 80 | 32 10 0.005 | 0.01 | 0.5 | 0.2871 | EQ
14 G12-14 | 80 | 32 10 0.005 | 0.1 | 0.5 | 0.2871 | EQ
15 G12-15 | 80 32 10 0.005 | 0.5 0.5 | 0.2871 EQ
16 G12-16 | 80 | 32 10 0.005 0 0.4 | 0.2871 | EQ
17 G12-17 | 80 | 32 10 0.005 0 0.6 | 0.2871 | EQ
18 G12-18 | 320 | 64 25 0.001 0 0.5 | 0.3432 TI

Table D.2 Case Definitions for Sensitivity Analysis (Table 4.1)

Caset | Grid#t | M | o | €qc | Type
19 G646-2 | 0.85 | 0° | N/A | TI
20 G646-2 | 0.85 [ 0° [ 107 | EQ
21 G646-2 | 0.85 [ 0° [ 1073 | EQ
22 G646-2 [ 0.85 [ 0° | 107% [ EQ
23 Go646-2 | 0.85 [ 0° [ 10-° | EQ
24 G646-2 [ 0.85 [ 0° [ 107 | EQ
25 G646-2 | 0.85 [ 0° [ 107° | EQ
Table D.3

Convergence Properties Run Summary (Table 4.3)

2

Casedt | Grid#t | oy | ®a [n=Ca | 72 |n/wa | ts [ Mo | @ | 4 [ Type
38 G646-4 0.5 -0.2 0 0.29 0.2 10 | 0.87 0 1.9 TI
39 G646-4 0.5 -0.2 0 0.29 0.2 10 | 0.87 0 2.0 TI
40 G646-4 0.5 -0.2 0 0.29 0.2 10 | 0.87 0 2.1 TI
41 G646-4 0.5 -0.2 0 0.29 | 0.3434 | 10 | 0.87 0 2.25 TI
42 G646-5 | 0.375 | -0.25 1 0.25 0.2 125 | 0.8 | 1.25° | 5.0 EQ
43 G646-5 | 0.375 | -0.25 1 0.25 0.2 125 | 0.8 | 1.25° | 5.0 TI

Table D.4 Run Summary: PAPA Validation (Table 5.1)




Case#t | Grid#t | 2o |Ch=Ca| ra |wnfwe | s | Mo [ @0 ] @ Type
44 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 1 0.85 | 0° | 6.5 | BGSN4
45 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 6.5 Eig
46 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 { 0.85 ] 0° | 7.0 Eig
47 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0851 0° | 7.5 Eig
48 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 8.0 Eig
49 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 8.5 Eig
50 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 6.5 TI
51 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 1 085 0° | 7.0 TI
52 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 ] 0° | 7.5 TI
53 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 8.0 TI
54 G646-7 | 0.375 | -0.25 0.1 0.25 0.2 125 | 0.85 | 0° | 8.5 TI

Table D.5 Run Summary: Hopf-Point Validation (Table 7.1)

Case#t | Grid## | I | J | Awall | Rypgey | @* o % Diff u* | % Diff ©*
55 G646-9 [ 60 | 13 | 0.005 4.1 6.434 | -0.1194 -7.3% 8.8%
56 G646-7 [ 60 | 15 | 0.005 8.0 7.050 | -0.1079 1.6% -1.6%
57 G646-8 | 60 | 15 | 0.005 10.0 | 7.588 | -0.1048 9.4% -4.5%
58 G646-6 [ 60 | 15 | 0.015 8.0 7.720 | -0.1055 11.3% -3.8%
59 G646-5 | 100 | 15 | 0.005 10.0 | 6.674 | -0.1123 -3.8% 2.4%
60 G646-3 | 100 | 15 | 0.015 10.0 | 6.937 | -0.1097 | Baseline Baseline

Table D.6 Run Summary: Grid Refinement (Table 7.4)

Casedt | Grid# | (= (o Moo Qg w Type Method
61 G646-3 0.5 0.85 0 0.1 Point BGSN4
62 G646-3 0.5 0.7-0.852 0 0.5 | Boundary | BGSN4
63 G646-3 0 0.7-0.854 0 0.5 | Boundary | BGSN4
64 G646-3 0-0.5 0.85 0 0.5 | Boundary | BGSN4
65 G646-3 0.5 0.85 0°-1.25° | 0.5 | Boundary | BGSN4

Table D.7 Run Summary: Hopf-Point Results (Table 7.5)

Case# | «, fs/as Type Method
66 0.5° 0.5 Point BGSN4
67 0.5° | 0.5-2.0 | Boundary | BGSN4
68 0.25° | 0.5-2.0 | Boundary | BGSN4
69 0.75° | 0.5-2.0 | Boundary | BGSN4
70 1.0° | 0.5-2.0 | Boundary | BGSN4

Table D.8 Run Summary: Nonlinear Structural Hopf-Point Results (Table 8.3)
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D.3 BGSNS5 and BGSN Profile Listing

This section presents the FORTRAN profile of the BGSN4 and BGSN5 Hopf-point codes.
The code was profiled for the same grid and the same case. The solution was stopped after two

iterations.
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%time | seconds | cum % | cum sec procedure (file)
19.6 | 62.9658 | 19.6 62.97 etasweep (TVDntiAE.f)
15.1 | 48.4482 | 34.8 111.41 matmuls (paclib46.f)
12.9 | 41.4951 | 47.7 152.91 jac (TVDntiAE.f)
9.2 29.5117 | 56.9 182.42 xisweep (TVDntiAE.f)
8.9 28.4824 | 65.8 210.90 blklum (paclib46.f)
8.0 25.6348 | 73.8 236.54 dtime (TVDntiAE.f)
5.4 17.1523 | 79.2 253.69 cut (TVDntiAE.f)
5.0 |[15.9922 | 84.2 269.68 energy (TVDntiAE.f)
4.0 12.9219 | 88.2 282.60 brdlum (paclib46.f)
3.4 10.9531 91.6 293.56 fcn (TVDntiAE.f)
1.8 5.6885 93.4 299.25 blkdec (paclib46.f)
1.7 5.3457 | 95.0 304.59 boundary (TVDntiAE.f)
1.2 3.9844 96.3 308.58 brdsol (paclib46.f)
1.0 3.3516 | 97.3 311.93 primitive (TVDntiAE.f)
0.5 1.7061 97.9 313.63 bordjac (TVDntiAE.f)
0.4 1.2217 | 98.3 314.86 derivs (TVDntiAE.f)
0.4 1.1729 [ 98.6 316.03 gaussj (paclib46.f)
0.3 1.0254 98.9 317.05 modify (TVDntiAE.f)
0.2 0.7764 | 99.2 317.83 prdavbrd (paclib46.f)
0.2 0.5322 99.3 318.36 matinv (paclib46.f)
0.2 0.4932 | 99.5 318.86 metrics (TVDntiAE.f)
0.1 0.4355 | 99.6 319.29 gsbrd (paclib46.f)
0.1 | 02627 | 99.7 | 319.55 farfield (TVDNGAE f)
0.1 0.2393 | 99.8 319.79 unblok (TVDntiAE.f)
0.1 | 0.2158 | 99.9 | 320.01 blok (TVDIHAET)
0.1 0.2090 | 99.9 320.22 border (paclib46.f)
0.0 0.1260 100.0 320.34 newgrd (TVDntiAE.f)
0.0 0.0742 | 100.0 | 320.42 gyppar (TVDntiAE.f)
0.0 0.0166 | 100.0 | 320.43 | tvdntiae-main (TVDntiAE.f)
0.0 0.0098 100.0 320.44 mod2 (TVDntiAE.f)
0.0 | 0.0059 | 100.0 | 320.45 output (TVDntiAEf)
0.0 0.0059 100.0 320.46 gpar (TVDntiAE.f)
0.0 0.0059 100.0 320.46 update (TVDntiAE.f)

Table D.9  Profile listing for BGSN4: generated Thu Apr 25 05:06:26 1996, each sample covers
4.00 byte(s) for 0.0003% of 320.4619 seconds




%time | seconds | cum % | cum sec procedure (file)
26.8 | 383.8975 | 26.8 383.90 metrics (TVDntiAE.f)
142 | 203.9424 | 41.1 587.84 mod2 (TVDntiAE.f)
11.2 | 159.7676 | 52.2 747.61 | etasweep (TVDntiAE.f)
106 | 152.0117 | 62.8 | 899.62 | gypy (TVDntiAET)
5.5 78.2090 68.3 977.83 xisweep (TVDntiAE.f)
44 | 624355 | 72.7 | 1040.26 | dtime (IVDntAES)
4.0 57.7803 76.7 1098.04 cut (TVDntiAE.f)
3.6 51.8789 | 80.3 | 1149.92 | newgrd (TVDntiAE.f)
3.4 | 484707 | 83.7 | 1198.39 | matmuls (paclib46.f)
3.2 45.9326 | 86.9 | 1244.33 | energy (TVDntiAE.f)
3.0 | 42.7959 | 89.9 | 1287.12 | jac (IVDnGAE)
2.8 | 40.6494 | 92.8 | 1327.77 | fon (TVDntAE)
2.3 32.2451 95.0 1360.02 | boundary (TVDntiAE.f)
2.0 | 285488 | 97.0 | 1388.57 |  blklum (pachibd6.)
0.9 12.7998 97.9 1401.37 brdlum (paclib46.f)
0.5 7.5938 98.4 1408.96 | primitive (TVDntiAE.f)
0.4 5.9951 98.8 | 1414.95 blkdec (paclib46.f)
0.3 3.9063 99.1 | 1418.86 brdsol (paclib46.f)
0.2 3.5205 99.4 1422.38 derivs (TVDntiAE.f)
0.1 1.7998 99.5 1424.18 modify (TVDntiAE.f)
0.1 1.7842 99.6 1425.96 prdavbrd (paclib46.f)
0. | 1.7100 | 99.7 | 1427.67 | bordjac (IVDntAE.f)
0.1 1.1660 99.8 1428.84 gaussj (paclib46.f)
0.1 0.7969 99.9 1429.64 | farfield (TVDntiAE.f)
0.0 0.5195 99.9 | 1430.16 matinv (paclib46.f)
0.0 0.4980 99.9 | 1430.66 gsbrd (paclib46.f)
0.0 0.2529 100.0 | 1430.91 blok (TVDntiAE.f)
0.0 0.2500 100.0 | 1431.16 unblok (TVDntiAE.f)
0.0 0.2109 | 100.0 | 1431.37 border (paclib46.f)
0.0 0.0791 100.0 | 1431.45 | gyppar (TVDntiAE.f)
0.0 0.0088 100.0 | 1431.46 | tvdntiae (TVDntiAE.f)
0.0 0.0059 100.0 | 1431.46 output (TVDntiAE.f)
0.0 0.0059 100.0 | 1431.47 | update (TVDntiAE.f)
0.0 0.0059 100.0 | 1431.47 gpar (TVDntiAE.f)

Table D.10  Profile listing for BGSN5: generated Thu Apr 25 06:33:38 1996, each sample covers
4.00 byte(s) for 0.0003% of 320.4619 seconds
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Appendiz E. TVDntiAE Code Summary

This appendix gives an overview of the computer code developed during the current research.
First, a summary of the overall code is provided with a listing of the types of solutions obtainable.
Next, a summary of the individual subroutines of TVDntiAE are provided. A description of a
library of subroutines necessary to solve the linear systems is also provided. Finally, the archival

structure of the code and the data generated is provided.

E.1 Code Overview

TVDntiAE is a FORTRAN 90 computer code developed to compute a suite of solutions for
a two-dimensional airfoil with an “O”-grid. The aerodynamics model the code is based on is the
Euler equations discretized with the Harten-Yee [149] total variation diminishing (TVD) scheme.
The structural model is a two degree-of-freedom pitch and plunge model composed of linear and

torsional springs.

The code is capable of computing the following types of solutions:

o Explicit time-integration to steady-state solution of a static airfoil,
e Newton’s method fully implicit solution of a static airfoil,
e Time-accurate solution of an airfoil in forced pitch and plunge motion,

e Time-accurate solution of an airfoil with pitch and plunge structural coupling,

Newton’s method fully implicit equilibrium solution of an airfoil with pitch and plunge struc-

tural coupling,
e Hopf-bifurcation point solution of an airfoil with pitch and plunge structural coupling.

The fully implicit Jacobian matrix is computed numerically via central-difference approximations.

Equilibrium and Hopf-point solutions utilize linear algebra subroutines of a library developed by
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Beran [13], and extended to include the Hopf-bifurcation point algorithm by the author, called

PACLIB (paclib46.f).

E.2 List of Subroutines

The following is a list of the subroutines in TVDntiAE.

e EXPLICIT-driving subroutine to compute a time-integration solution to steady-state.

e DYNAMIC-driving subroutine to compute a time-accurate time-integration solution for either

a forced oscillation or PAPA model.
e NEWTON-driving subroutine to compute an equilibrium solution with PACLIB.
e FCN-subroutine to compute the nonlinear algebraic equation s for each node.
e XISWEEP-subroutine to sweep the xi direction with a TVD operator.
o ETASWEEP-subroutine to sweep the eta direction with a TVD operator.
e METRICS-subroutine to compute the metrics of the grid (only called once).
e BOUNDARY-subroutine to update the surface boundary values.
o FARFIELD-subroutine to compute the nonlinear algebraic equations at the farfield.
e CUT-subroutine to update the overlap points.
e DTIME-subroutine to compute the maximum time step for the stability criteria.
¢ GEOMETRY-subroutine to compute the slope angle of the surface at a grid point.
e PRIMITIVE-subroutine to compute the primitive variable from the conserved variables.
o UPDATE-subroutine to update the conserved variables from a Newton iterate.
e UPDATB-subroutine to update the structural variables from a Newton iterate.

¢ MODIFY-subroutine to modify a conserved variable by epsilon for the numerical Jacobian

routine.

E-2




MOD2-subroutine to modify a conserved variable by epsilon times the eigenvector for the

numerical Jacobian routine
OUTPUT-subroutine to output the solution vector.

ENERGY-subroutine to compute the lift drag and moment coefficient and then compute the

q vector for the structural model.

FCN1-subroutine to compute the partial derivative of the aero equations with respect to
par(1).

FCN3-subroutine to compute the partial derivative of the aero equations with respect to
par(3).

FCN4-subroutine to compute the partial derivative of the aero equations with respect to
par(4).

JAC-subroutine to compute the numerical Jacobian of the function evaluation of FCN.
BLOK-subroutine to block up an nktot vector into 16 element blocks.

UNBLOK-subroutine to unblock a 16 element block vector into an nktot vector.
FORCED-subroutine to drive a forced oscillation time-accurate.

STRUC-subroutine to drive a PAPA time accurate solution.

DERIVS-subroutine to compute the derivatives necessary for the structural equations.
RK4-subroutine to perform fourth order Runge-Kutta taken from Numerical Recipes.
RKD-subroutine to drive the fourth-order Runge-Kutta integration.

BORDJAC-subroutine to compute the bordered Jacobian matrix.

BCDCALC-subroutine to drive the calculation of B C D matrices needed in BORDJAC.
CDCALC-subroutine to compute C and D Jacobian matrices needed in BORDJAC.

BCALC-subroutine to compute the B matrix needed in BORDJAC.
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e MATINV2-subroutine to compute the inverse of a square matrix.

o GUPUSUB-subroutine to compute the Jacobian matrix [(FU)P]U needed in the Hopf point

calculation.

o PACKAP-subroutine to pack a blocked banded Jacobian matrix into a fully packed banded

Jacobian matrix.

e GYPY-subroutine to compute the bordered Jacobian matrix elements for the Hopf point

calculation (calls GUPUSUB).

e GPAR-subroutine to compute the partial derivative of the aero and structural equations with
respect to par(.).

e GYPPAR-subroutine to compute the partial derivative of the matrix GYP with respect to
par(.).

e EIGOUT-subroutine to compute the set of eigenvalues of GY.

e BALANC-subroutine to balance the GY matrix (from Numerical Recipes).

e ELMHES-subroutine to put GY into upper Hessian form (from Numerical Recipes).

e HQR-subroutine to obtain the eigenvalues of a Hessian matrix (from Numerical Recipes).

E.3 PACLIB Overview

PACLIB is a library of FORTRAN subroutines to compute solutions of nonlinear systems
of equations (in the current version FORTRAN 90 statements are used). The library is based on
Newton’s method with extensions to include: the chord method, pseudo-arclength continuation,
and a modified form of the Griewank and Reddien algorithm of solving for Hopf-bifurcation points.
All linear algebra problems of the form Az = b are solved assuming A is a sparse banded matrix in
packed form and either utilizes Gaussian-elimination or LU decomposition. The library has been

used to solve engineering problems in (at least) the following references: [13], [14], [15], [96], [94], [95],



and [135]. The subroutine GSBRD in PACLIB version 4.6 (paclib46.f) is the subroutine written
by the author. It solves an extended system of equations for a Hopf-point with a blocked-Gauss-

Seidel-Newton under-relaxation method.

E.4 Data Archival Structure

The complete set of data and computer codes and document files are archived on the machine

called “data”. The following is a description of each subdirectory containing pertinent files.

o /fluids/smorton/DISS - dissertation *.tex, *.sty, *.fig, and *.eps files.

o /fluids/smorton/RENO - 34" ATAA Reno conference paper *.tex, *.sty, *.fig, and *.eps

files.

o /fluids/smorton/SANDIEGO - AIAA Applied Aero San Diego conference paper *.tex,

*.5ty, *.fig, and x.eps files.

o /fluids/smorton/DISS/DATA - dissertation data files and associated tecplot v6.0 style,

layout, and plot files

o /fluids/smorton/DISS/TV DNTIAE - TVDntiAE paclib46 research codes developed for

the dissertation along with equilibrium and time-accurate data post processing programs

e /fluids/smorton/DISS/TV DNTIAE/CHECKTI - contains the input and output files
of a time-integration run for checking TVDntiAE in this mode (including instructions on

compilation and run commands)

o /fluids/smorton/DISS/TV DNTIAE/CHECKEQ - contains the input and output files
of an equilibrium run for checking TVDntiAE in this mode (including instructions on compi-

lation and run commands)




e /fluids/smorton/DISS/TV DNTIAE/CHECKBGSN4 - contains the input and output
files of a BGSN4 Hopf-point run for checking TVDntiAE in this mode (including instructions

on compilation and run commands)

e /fluids/smorton/DISS/TV DNTIAE/CHECKBGSN5 - contains the input and output
files of a BGSN5 Hopf-point run for checking TVDntiAE in this mode (including instructions

on compilation and run commands)

o /fluids/smorton/DISS/TV DNTIAE/SOLUTIONS - contains the solution file in binary

format including conserved variable, grid, and structural data

o /fluids/smorton/DISS/TV DNTIAE/QSHK - contains all files generated during quasi-

one dimensional nozzle problem, including *.f and *.dat files

Each subdirectory includes a “readme” file explaining the contents of the directory.
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